Citation: | SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014 |
To study the Green rings of finite dimensional Δ-associative algebras, firstly, two classes of finite dimensional Δ-associative algebras were introduced by expanding eight dimension semisimple Hopf algebras. Then by generalizing the definition of the Green rings of the Hopf algebras to the Δ-associative algebras, the Green rings of the two classes of finite dimensional Δ-associative algebras and the structure were determined by the generators and relations.
[1] |
LI F. Weak Hopf algebras and some new solutions of Yang-Baxter equation [J]. J Algebra, 1998, 208(1): 72-100. doi: 10.1006/jabr.1998.7491
|
[2] |
LI F, DUPLIJ S. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation [J]. Comm Math Phys, 2002, 225(1): 192-217. http://www.academia.edu/8985054/Weak_Hopf_Algebras_and_Singular_Solutions_of_Quantum_Yang_Baxter_Equation
|
[3] |
YANG S L. Weak Hopf algebras corresponding to Cartan matrices [J]. J Math Phys, 2005, 46(043502): 1-18. https://www.researchgate.net/publication/2119363_Weak_Hopf_algebras_corresponding_to_Cartan_matrices
|
[4] |
CHENG D M, LI F. The structure of weak Hopf algebras corresponding to Uq(sl2)[J]. Comm in Algebra, 2009, 37(3): 729-742. doi: 10.1080/00927870802243499
|
[5] |
程东明.对应于Uq(sln)的弱Hopf代数的分类[J].数学物理学报, 2012, 32(3): 662-669. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxwx201203018&dbname=CJFD&dbcode=CJFQ
CHENG D M. Classification of weak Hopf algebras corresponding to Uq(sln) [J]. Acta Mathematica Scientia, 2012, 32(3): 662-669. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sxwx201203018&dbname=CJFD&dbcode=CJFQ
|
[6] |
CHENG D M. The structure of weak quantum groups corresponding to Sweedler algebra [J]. JP Journal of Algebra, Number Theory and Appl, 2010, 16(2): 89-99. http://www.ams.org/mathscinet-getitem?mr=2662950
|
[7] |
CHEN H X, OYSTAEYEN F V, ZHANG Y H. The Green rings of Taft algebras [J]. Proc Amer Math Soc, 2014, 142(3): 765-775. https://www.researchgate.net/publication/51952661_The_Green_Rings_of_Taft_algebras
|
[8] |
LI L B, ZHANG Y H. The Green rings of the genera-lized Taft Hopf algebras [J]. Con Math, 2013, 585: 275-288. doi: 10.1090/conm/585
|
[9] |
SWEEDLER M E. Hopf algebras [M]. New York: Benjamin, 1969: 3-27.
|
[10] |
MASUOKA A. Semisimple Hopf algebras of dimension 6, 8[J]. Isreal J Math, 1995, 92(1): 361-373. https://www.researchgate.net/publication/225198614_Semisimple_Hopf_algebras_of_dimension_6_8
|
[1] | YAO Hailou, LÜ Xinlong. Tilting Dimensions of Skew Group Algebras[J]. Journal of Beijing University of Technology, 2021, 47(2): 201-208. DOI: 10.11936/bjutxb2019090012 |
[2] | YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006 |
[3] | CHENG Cheng, YANG Shilin. Weak Hopf Algebras Corresponding to the An Non-standard Deformation[J]. Journal of Beijing University of Technology, 2017, 43(10): 1604-1608. DOI: 10.11936/bjutxb2016090035 |
[4] | YAO Hailou, ZHOU Lili. Generalized Path Algebras and Their Hochschild Cohomology[J]. Journal of Beijing University of Technology, 2016, 42(4): 628-631,640. DOI: 10.11936/bjutxb2015060071 |
[5] | HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. DOI: 10.3969/j.issn.0254-0037.2012.03.030 |
[6] | HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120. DOI: 10.3969/j.issn.0254-0037.2011.07.025 |
[7] | HU Zhi-hua. Differential Algebraic Attack of Serpent[J]. Journal of Beijing University of Technology, 2010, 36(5): 651-653. DOI: 10.3969/j.issn.0254-0037.2010.05.015 |
[8] | YAO Hai-lou, LI Hui, PING Yan-ru. The Hochschild Cohomology of the Weak Entwining Structure of a Path Algebra and a Path Coalgebra[J]. Journal of Beijing University of Technology, 2010, 36(2): 274-279. DOI: 10.3969/j.issn.0254-0037.2010.02.022 |
[9] | YANG Shi-lin, AI Chun-rui. Two-parameter Weak Hopf Algebra ωr,sd(sln)[J]. Journal of Beijing University of Technology, 2008, 34(3): 332-336. DOI: 10.3969/j.issn.0254-0037.2008.03.019 |
[10] | Yang Shilin. The Maschke's Theorem for Hopf Algebras─A New Version of the Proof[J]. Journal of Beijing University of Technology, 1998, 24(4): 55-57. |
1. |
杨士林,宋嫒月. 一类32维半单Hopf代数的拟三角结构. 北京工业大学学报. 2019(08): 815-820 .
![]() |