HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. DOI: 10.3969/j.issn.0254-0037.2012.03.030
Citation:
HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. DOI: 10.3969/j.issn.0254-0037.2012.03.030
HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. DOI: 10.3969/j.issn.0254-0037.2012.03.030
Citation:
HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. DOI: 10.3969/j.issn.0254-0037.2012.03.030
Let k be an algebraically closed field,and A be a finite dimensional algebra.This paper classifies minimal-infinite representation incidence algebras and discusses its simple connectedness with the quiver method.