Citation: | CHENG Cheng, YANG Shilin. Weak Hopf Algebras Corresponding to the An Non-standard Deformation[J]. Journal of Beijing University of Technology, 2017, 43(10): 1604-1608. DOI: 10.11936/bjutxb2016090035 |
Firstly, a non-standard quantum group Xq(An) was introduced, and then by replacing the group of grouplike elements of Xq(An), a weak Hopf algebra mXq(An) was obtained. Moreover, the structure of mXq(An) was discussed and the Ext quivers of mXq(An) was given.
[1] |
GE M L, LIU G C, XUE K. New solutions of Yang-Baxter equations: Birman-Wenzl algebra and quantum group structures [J]. J Phys A: Math Gen, 1991, 24: 2679-2690. doi: 10.1088/0305-4470/24/12/008
|
[2] |
JING N H, GE M L, WU Y S. A new quantum group associated with a "nonstandard" braid group represention[J]. Lett Math Phys, 1991, 21: 193-203. doi: 10.1007/BF00420369
|
[3] |
AGHAMOHAMMADI A, KARIMIPOUR V, ROUHANI S. The multiparametric non-standard deformation of An-1 [J]. J Phys A: Math Gen, 1993, 26: L75-L82. doi: 10.1088/0305-4470/26/3/002
|
[4] |
LI F. Weak Hopf algebras and new solutions of Yang-Baxter equation [J]. J Algebra, 1998, 208: 72-100. doi: 10.1006/jabr.1998.7491
|
[5] |
LI F, DUPLIJ S. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation [J]. Comm Math Phys, 2002, 225(1): 191-217. doi: 10.1007/s002201000576
|
[6] |
YANG S L. Weak Hopf algebras corresponding to Cartan matrices [J]. J Math Phys, 2005, 46: 073502. doi: 10.1063/1.1933063
|
[7] |
WANG H, YANG S L. The isomorphisms and the center of weak quantum algebras wslq(2) [J]. Tamkang J Math, 2005, 36(4): 365-376.
|
[8] |
YANG S L, WANG H. The Clebsch-Gordan decomposition for quantum algebra mathfrakmXq(2) [G]//CHEN J L, DING N Q, MARUBAYASHI H. Advances in Ring Theory. Hackensack, NJ: World Sci Publ, 2005: 307-316.
|
[9] |
程东明.对应于Uq(sln)的弱Hopf代数的分类.数学物理学报[J]. 2012, 32(3): 662-669.
CHENG D M. Classification of weak Hopf algebras corresponding to Uq(sln)[J]. Acta Mathematica Scientia, 2012, 32(3): 662-669. (in Chinese)
|
[10] |
KASSEL C. Quantum groups [M]. Berlin: Springer-verlag, 1995: 1-50.
|
[11] |
CHIN W, MONTGOMERY S. Basic coalgebras [M]. Providence: Amer Math Soc, 1997: 41-47.
|
[12] |
CHIN W. A brief introduction to coalgebra representation theory [M]. New York: Marcel Dekker Inc, 2004: 109-131.
|
[13] |
CHEN X W, ZHANG P. Comodules of Uq(sl2) and modules of SLq(2) via quiver methods [J]. J Pure Appl Algebra, 2007, 211: 862-876. doi: 10.1016/j.jpaa.2007.03.010
|
[1] | HU Wenwen, ZHOU Rigui. Fidelity Analysis of Weak Measurement Theory for Three-level Quantum State Sharing[J]. Journal of Beijing University of Technology, 2023, 49(6): 609-620. DOI: 10.11936/bjutxb2022100012 |
[2] | YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006 |
[3] | SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014 |
[4] | HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480. |
[5] | CHEN Jia-lei, YANG Shi-lin. Restricted Forms of Quantum Supergroups Oq(GL(1|1))′[J]. Journal of Beijing University of Technology, 2012, 38(3): 473-475. |
[6] | HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120. |
[7] | FAN Zhou-tian, REN Zhi-hua. Standard Eigenvectors of Generalized Fuzzy Matrices[J]. Journal of Beijing University of Technology, 2010, 36(10): 1437-1440. |
[8] | YAO Hai-lou, LI Hui, PING Yan-ru. The Hochschild Cohomology of the Weak Entwining Structure of a Path Algebra and a Path Coalgebra[J]. Journal of Beijing University of Technology, 2010, 36(2): 274-279. |
[9] | YANG Shi-lin, AI Chun-rui. Two-parameter Weak Hopf Algebra ωr,sd(sln)[J]. Journal of Beijing University of Technology, 2008, 34(3): 332-336. |
[10] | Yang Shilin. The Maschke's Theorem for Hopf Algebras─A New Version of the Proof[J]. Journal of Beijing University of Technology, 1998, 24(4): 55-57. |
1. |
杨士林,宋嫒月. 一类32维半单Hopf代数的拟三角结构. 北京工业大学学报. 2019(08): 815-820 .
![]() |