Loading [MathJax]/jax/output/SVG/jax.js
    • 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CHENG Cheng, YANG Shilin. Weak Hopf Algebras Corresponding to the An Non-standard Deformation[J]. Journal of Beijing University of Technology, 2017, 43(10): 1604-1608. DOI: 10.11936/bjutxb2016090035
Citation: CHENG Cheng, YANG Shilin. Weak Hopf Algebras Corresponding to the An Non-standard Deformation[J]. Journal of Beijing University of Technology, 2017, 43(10): 1604-1608. DOI: 10.11936/bjutxb2016090035

Weak Hopf Algebras Corresponding to the An Non-standard Deformation

More Information
  • Received Date: September 12, 2016
  • Available Online: August 03, 2022
  • Published Date: October 09, 2017
  • Firstly, a non-standard quantum group Xq(An) was introduced, and then by replacing the group of grouplike elements of Xq(An), a weak Hopf algebra mXq(An) was obtained. Moreover, the structure of mXq(An) was discussed and the Ext quivers of mXq(An) was given.

  • [1]
    GE M L, LIU G C, XUE K. New solutions of Yang-Baxter equations: Birman-Wenzl algebra and quantum group structures [J]. J Phys A: Math Gen, 1991, 24: 2679-2690. doi: 10.1088/0305-4470/24/12/008
    [2]
    JING N H, GE M L, WU Y S. A new quantum group associated with a "nonstandard" braid group represention[J]. Lett Math Phys, 1991, 21: 193-203. doi: 10.1007/BF00420369
    [3]
    AGHAMOHAMMADI A, KARIMIPOUR V, ROUHANI S. The multiparametric non-standard deformation of An-1 [J]. J Phys A: Math Gen, 1993, 26: L75-L82. doi: 10.1088/0305-4470/26/3/002
    [4]
    LI F. Weak Hopf algebras and new solutions of Yang-Baxter equation [J]. J Algebra, 1998, 208: 72-100. doi: 10.1006/jabr.1998.7491
    [5]
    LI F, DUPLIJ S. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation [J]. Comm Math Phys, 2002, 225(1): 191-217. doi: 10.1007/s002201000576
    [6]
    YANG S L. Weak Hopf algebras corresponding to Cartan matrices [J]. J Math Phys, 2005, 46: 073502. doi: 10.1063/1.1933063
    [7]
    WANG H, YANG S L. The isomorphisms and the center of weak quantum algebras wslq(2) [J]. Tamkang J Math, 2005, 36(4): 365-376.
    [8]
    YANG S L, WANG H. The Clebsch-Gordan decomposition for quantum algebra mathfrakmXq(2) [G]//CHEN J L, DING N Q, MARUBAYASHI H. Advances in Ring Theory. Hackensack, NJ: World Sci Publ, 2005: 307-316.
    [9]
    程东明.对应于Uq(sln)的弱Hopf代数的分类.数学物理学报[J]. 2012, 32(3): 662-669.

    CHENG D M. Classification of weak Hopf algebras corresponding to Uq(sln)[J]. Acta Mathematica Scientia, 2012, 32(3): 662-669. (in Chinese)
    [10]
    KASSEL C. Quantum groups [M]. Berlin: Springer-verlag, 1995: 1-50.
    [11]
    CHIN W, MONTGOMERY S. Basic coalgebras [M]. Providence: Amer Math Soc, 1997: 41-47.
    [12]
    CHIN W. A brief introduction to coalgebra representation theory [M]. New York: Marcel Dekker Inc, 2004: 109-131.
    [13]
    CHEN X W, ZHANG P. Comodules of Uq(sl2) and modules of SLq(2) via quiver methods [J]. J Pure Appl Algebra, 2007, 211: 862-876. doi: 10.1016/j.jpaa.2007.03.010
  • Related Articles

    [1]HU Wenwen, ZHOU Rigui. Fidelity Analysis of Weak Measurement Theory for Three-level Quantum State Sharing[J]. Journal of Beijing University of Technology, 2023, 49(6): 609-620. DOI: 10.11936/bjutxb2022100012
    [2]YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006
    [3]SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014
    [4]HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480.
    [5]CHEN Jia-lei, YANG Shi-lin. Restricted Forms of Quantum Supergroups OqGL(1|1))′[J]. Journal of Beijing University of Technology, 2012, 38(3): 473-475.
    [6]HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120.
    [7]FAN Zhou-tian, REN Zhi-hua. Standard Eigenvectors of Generalized Fuzzy Matrices[J]. Journal of Beijing University of Technology, 2010, 36(10): 1437-1440.
    [8]YAO Hai-lou, LI Hui, PING Yan-ru. The Hochschild Cohomology of the Weak Entwining Structure of a Path Algebra and a Path Coalgebra[J]. Journal of Beijing University of Technology, 2010, 36(2): 274-279.
    [9]YANG Shi-lin, AI Chun-rui. Two-parameter Weak Hopf Algebra ωr,sd(sln)[J]. Journal of Beijing University of Technology, 2008, 34(3): 332-336.
    [10]Yang Shilin. The Maschke's Theorem for Hopf Algebras─A New Version of the Proof[J]. Journal of Beijing University of Technology, 1998, 24(4): 55-57.
  • Cited by

    Periodical cited type(1)

    1. 杨士林,宋嫒月. 一类32维半单Hopf代数的拟三角结构. 北京工业大学学报. 2019(08): 815-820 . 本站查看

    Other cited types(1)

Catalog

    Article views (211) PDF downloads (54) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return