Citation: | ZHU Jiang-miao, LI Ran, MIAO Jing-yuan, WANG Yuan. Time-based Distortion Correction Algorithm of High-speed Sampling Oscilloscope[J]. Journal of Beijing University of Technology, 2013, 39(12): 1810-1814. DOI: 10.3969/j.issn.0254-0037.2013.12.008 |
[1] |
GYLES C.Repetitive waveform high frequency, high precision digitizer[J].IEEE Trans Instrum Meas, 1989, 38 (4) :917-919.
|
[2] |
SCOTT W R, SMITH J.Error corrections for an automated time-domain network analyzer[J].IEEE Trans Instrum Meas, 1986, 35 (9) :300-303.
|
[3] |
林茂六, 张喆.高速采样示波器中的时基失真及其估计[J].计量学报, 2004, 24 (3) :266-269.LIN Mao-liu, ZHANG Zhe.The TBD introduction and estimation of high-speed sampling oscilloscope[J].ACTA Metrologica Sinica, 2004, 24 (3) :266-269. (in Chinese)
|
[4] |
张喆, 林茂六.一种计算时基失真估计不确定度的新方法[J].哈尔滨工业大学学报, 2007, 39 (1) :78-80.ZHANG Zhe, LIN Mao-liu.A new method for calculating an uncertainty of time-based distortion estimation[J].Journal of Harbin Institute of Technology, 2007, 39 (1) :78-80. (in Chinese)
|
[5] |
梁志国, 孟晓风.数字存储示波器时基失真与采样抖动的评价研究[J].计量学报, 2008, 28 (4) :358-364.LIANG Zhi-guo, MENG Xiao-feng.Study on evaluation of both time-base distortion and sampling jitter of digital storage oscilloscopes[J].Acta Metrologica Sinica, 2008, 28 (4) :358-364. (in Chinese)
|
[6] |
WANG C M J, HALE P D, JARGON J A, et al.Sequential estimation of timebase corrections for an arbitrarily long waveform[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61 (10) :2689-2694.
|
[7] |
WANG C M J, HALE P D.Least-squares estimation of time-based distortion of sampling oscilloscopes[J].IEEE Transactions on Instrumentation and Measurement, 1999, 48 (6) :1324-1332.
|
[8] |
何丕雁, 白泰礼.一种改进的正弦拟合时基失真估计算法[J].系统工程与电子技术, 2003, 25 (3) :359-361.HE Pei-yan, BAI Tai-li.An improved sine-fitting estimation method for time-base distortion[J].Systems Engineering and Electronics, 2003, 25 (3) :359-361. (in Chinese)
|
[9] |
RETTIG J B, DOBOS L.Picosecond time interval measurements[J].IEEE Trans Instrum Meas, 1995, 44 (4) :284-287.
|
[10] |
VERSPECHT J.Accurate spectral estimation based on measurements with a distorted-time base digitizer[J].IEEE Trans Instrum Meas, 1994, 43 (4) :210-215.
|
[11] |
VANDERSTEEN G, ROLAIN Y, SCHOUKENS J.An identification technique for data acquuition characterization in the presence of nonlinear distortions and time base distortions[J].IEEE Transactions on Instrumentation and Measurement.2001, 50 (5) :1355-1363.
|
[12] |
GUIILAUME P, PINTELON R, SCHOUKENS J.Nonparametric frequency response function based on nonlinear averaging techniques[J].IEEE Transactions on Instrumentation and Measurement, 1992, 41 (6) :739-746.
|
[13] |
ROLAIN Y, SCHOUKENS J.Signal reconstruction for non-equidistant finite length sample sets:a“KIS”approach[J].IEEE Transactions on Instrumentation and Measurement, 2002, 47 (5) :1046-1052.
|
[1] | WANG Pu, XIN Jiaojiao, GAO Xuejin, ZHANG Nanhua. Fault Diagnosis of Chiller Based on Independent Component Analysis and Least Squares Support Vector Machine[J]. Journal of Beijing University of Technology, 2017, 43(11): 1641-1647. DOI: 10.11936/bjutxb2016070012 |
[2] | ZHU Xianglin, HUA Tianzheng. Soft Sensor Model for Straw Fermentation Process Based on Least Squares Support Vector Machine Optimized by Chaos Fruit Fly Algorithm[J]. Journal of Beijing University of Technology, 2016, 42(10): 1468-1474. DOI: 10.11936/bjutxb2016030039 |
[3] | ZHONG Lu-sheng, CHEN Li-yong, YANG Hui, GONG Jin-hong, ZHANG Yong-xian, ZHU Zhen-min. Gear Wear Prediction Based on Robust Least Squares Support Vector Machine[J]. Journal of Beijing University of Technology, 2014, 40(7): 1028-1034,1047. DOI: 10.3969/j.issn.0254-0037.2014.07.013 |
[4] | ZHU Jiang-miao, WANG Yuan, MIAO Jing-yuan, LI Ran. Construction of Data Acquisition System of Time-based Distortion for High-speed Sampling Oscilloscope[J]. Journal of Beijing University of Technology, 2014, 40(4): 509-513. DOI: 10.3969/j.issn.0254-0037.2014.04.005 |
[5] | GUO En-dong, ZHAO Zhao, WANG Zai-rong, LIU Zhi, GAO Lin, WANG Ya-dong. Improved Methodology for Seismic Estimation of Highway Beam Bridges[J]. Journal of Beijing University of Technology, 2013, 39(2): 192-197. DOI: 10.3969/j.issn.0254-0037.2013.02.006 |
[6] | ZHAO Xu, XUE Liu-gen, LI Jing-lan, CHENG Wei-hu. Parameter Estimation of Approximated Generalized Least Squares Estimators for the Generalized Pareto Distribution[J]. Journal of Beijing University of Technology, 2012, 38(5): 789-792. DOI: 10.3969/j.issn.0254-0037.2012.05.029 |
[7] | Fu Guangyu, Li Xiaoyang, Zeng Yanjun. The Determination of the Constitutive Equation of Arteries in Zero Stress State Using the Least Square Fit[J]. Journal of Beijing University of Technology, 1996, 22(1): 122-129. |
[8] | Guan Dachun, Wang Mu, Duan Naiqin, Xue Zonghui, Chen Zhongxiu. A Nonlinear Least-Square Technique for Solving the Stress Intensity Factors of Cracks by Method of Caustics[J]. Journal of Beijing University of Technology, 1994, 20(1): 17-22. |
[9] | Xu Ningshou. Recursive Minimum Norm Solution to the Parameter Estimation for Linear Systems and Its Application to the Starting of RLS Algorithm[J]. Journal of Beijing University of Technology, 1991, 17(3): 15-23. |
[10] | Wang Yong-po, Zhuo Xing-ren. The least squares evaluation method for form and position errors and the Calculation by computer[J]. Journal of Beijing University of Technology, 1981, 7(4): 57-73. |