• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
HAN Honggui, ZHAO Yaqian, YANG Hongyan, WU Xiaolong. Data-driven Optimal Control Method of Low-carbon for Wastewater Treatment Aeration Process[J]. Journal of Beijing University of Technology, 2024, 50(2): 131-139. DOI: 10.11936/bjutxb2023060011
Citation: HAN Honggui, ZHAO Yaqian, YANG Hongyan, WU Xiaolong. Data-driven Optimal Control Method of Low-carbon for Wastewater Treatment Aeration Process[J]. Journal of Beijing University of Technology, 2024, 50(2): 131-139. DOI: 10.11936/bjutxb2023060011

Data-driven Optimal Control Method of Low-carbon for Wastewater Treatment Aeration Process

More Information
  • Received Date: June 04, 2023
  • Revised Date: August 28, 2023
  • Available Online: December 21, 2023
  • For the existing wastewater treatment process, the carbon emission mechanism is unclear and difficult to assess, which hinders the implementation of effective control strategies to reduce overall carbon emissions. To solve this problem, a data-driven low-carbon optimization control method for the aeration process of wastewater treatment was designed. First, the influence factors of carbon emission and their relationship with water quality parameters were deeply analyzed, and the relationship between each water quality parameter and carbon emission in the aeration process was obtained. Second, a data-driven optimization model of energy consumption and carbon emission in the aeration process was designed to obtain the optimal control strategy of aeration process. Finally, the obtained low-carbon optimization control strategy was applied to the benchmark simulation model. Results demonstrate that the strategy can effectively track and control the aeration process and reduce the total energy consumption and carbon emissions.

  • [1]
    NGUYEN T K L, NGO H H, GUO W S, et al. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes[J]. Science of the Total Environment, 2019, 671: 1302-1313.
    [2]
    YAO H, GAO X Y, GUO J B, et al. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies: a critical review[J]. Environmental Pollution, 2022, 314: 120295. doi: 10.1016/j.envpol.2022.120295
    [3]
    GANORA D, HOSPIDO A, HUSEMANN J, et al. Opportunities to improve energy use in urban wastewater treatment: a European-scale analysis[J]. Environmental Research Letters, 2019, 14(4): 044028. doi: 10.1088/1748-9326/ab0b54
    [4]
    POLRUANG S, SIRIVITHAYAPAKORN S, TALANG R P N. A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs[J]. Journal of Cleaner Production, 2018, 172: 635-648. doi: 10.1016/j.jclepro.2017.10.183
    [5]
    ALSHBOUL Z, ENCINAS-FERNÁNDEZ J, HOFMANN H, et al. Export of dissolved methane and carbon dioxide with effluents from municipal wastewater treatment plants[J]. Environmental Science & Technology, 2016, 50(11): 5555-5563.
    [6]
    SHRESTHA A, BHATTARAI T N, GHIMIRE S, et al. Estimation of greenhouse gases emission from domestic wastewater in Nepal: a scenario-based analysis applicable for developing countries[J]. Chemosphere, 2022, 300: 134501. doi: 10.1016/j.chemosphere.2022.134501
    [7]
    NI B J, PENG L, LAW Y Y, et al. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways[J]. Environmental Science & Technology, 2014, 48(7): 3916-3924.
    [8]
    韩红桂, 杨士恒, 张璐, 等. 城市污水处理过程出水氨氮优化控制[J]. 上海交通大学学报, 2020, 54(9): 916-923.

    HAN H G, YANG S H, ZHANG L, et al. Optimal control of effluent ammonia nitrogen for municipal wastewater treatment process[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 916-923. (in Chinese)
    [9]
    SHEIK A G, MACHAVOLU V R K, SEEPANA M M, et al. Integrated supervisory and override control strategies for effective biological phosphorus removal and reduced operational costs in wastewater treatment processes[J]. Chemosphere, 2022, 287: 132346. doi: 10.1016/j.chemosphere.2021.132346
    [10]
    张璐, 张嘉成, 韩红桂, 等. 基于动态分解多目标粒子群优化的城市污水处理过程优化控制[J]. 北京工业大学学报, 2021, 47(3): 239-245. doi: 10.11936/bjutxb2019120023

    ZHANG L, ZHANG J C, HAN H G, et al. Optimal control for municipal wastewater treatment process based on dynamic decomposed multiobjective particle swarm optimization [J]. Journal of Beijing University of Technology, 2021, 47(3): 239-245. (in Chinese) doi: 10.11936/bjutxb2019120023
    [11]
    ZHANG R, XIE W M, YU H Q, et al. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J]. Bioresource Technology, 2014, 157: 161-165. doi: 10.1016/j.biortech.2014.01.103
    [12]
    DUAN H, VAN DEN AKKER B, THWAITES B J, et al. Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant[J]. Water Research, 2020, 185: 116196. doi: 10.1016/j.watres.2020.116196
    [13]
    HUANG F N, SHEN W H, ZHANG X W, et al. Impacts of dissolved oxygen control on different greenhouse gas emission sources in wastewater treatment process[J]. Journal of Cleaner Production, 2020, 274: 123233. doi: 10.1016/j.jclepro.2020.123233
    [14]
    QIN X B, LI Y, GOLDBERG S, et al. Assessment of indirect N2O emission factors from agricultural river networks based on long-term study at high temporal resolution[J]. Environmental Science & Technology, 2019, 53(18): 10781-10791.
    [15]
    TIAN H Q, XU R T, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586: 248-256.
    [16]
    FLORES-ALSINA X, ARNELL M, AMERLINCK Y, et al. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs[J]. Science of the Total Environment, 2014, 466/467: 616-624.
    [17]
    TALLEC G, GARNIER J, BILLEN G, et al. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation[J]. Bioresource Technology, 2008, 99(7): 2200-2209.
    [18]
    BEAUMONT H J E, LENS S I, REIJNDERS W N M, et al. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor[J]. Molecular Microbiology, 2004, 54(1): 148-158.
    [19]
    NODA N, KANEKO N, MIKAMI M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Water Science & Technology, 2004, 48(11/12): 363-370.
    [20]
    闫旭, 李琦路, 韩云平, 等. pH对污水好氧处理过程N2O产生的影响[J]. 环境工程学报, 2015, 9(7): 3240-3246.

    YAN X, LI Q L, HAN Y P, et al. Effect of pH value on N2O production in aerobic wastewater treatment process[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3240-3246. (in Chinese)
    [21]
    CHEN X M, MIELCZAREK A T, HABICHT K, et al. Assessment of full-scale N2O emission characteristics and testing of control concepts in an activated sludge wastewater treatment plant with alternating aerobic and anoxic phases[J]. Environmental Science & Technology, 2019, 53(21): 12485-12494.
    [22]
    YANG P, LU M H, TANG K W, et al. Coastal reservoirs as a source of nitrous oxide: spatio-temporal patterns and assessment strategy[J]. Science of the Total Environment, 2021, 790: 147878.
    [23]
    CHEN L L, WEN Z D, WANG W H, et al. Effects of temperature on N2O production in the process of nitrogen removal by micro-expansion aerobic granular sludge[J]. Desalination and Water Treatment, 2016, 57(59): 28743-28748.
    [24]
    REINO C, VAN LOOSDRECHT M C M, CARRERA J, et al. Effect of temperature on N2O emissions from a highly enriched nitrifying granular sludge performing partial nitritation of a low-strength wastewater[J]. Chemosphere, 2017, 185: 336-343.
    [25]
    BOLLON J, FILALI A, FAYOLLE Y, et al. N2O emissions from full-scale nitrifying biofilters[J]. Water Research, 2016, 102: 41-51
    [26]
    DUAN H R, ZHAO Y F, KOCH K, et al. Insights into nitrous oxide mitigation strategies in wastewater treatment and challenges for wider implementation[J]. Environmental Science & Technology, 2021, 55(11): 7208-7224.
    [27]
    LAW Y, NI B J, LANT P, et al. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate[J]. Water Research, 2012, 46(10): 3409-3419.
    [28]
    郝晓地, 杨振理, 于文波. 污水处理过程N2O排放: 过程机制与控制策略[J]. 环境科学, 2023, 44(2): 1163-1173.

    HAO X D, YANG Z L, YU W B. N2O emission from the processes of wastewater treatment: mechanisms and control strategies[J]. Environmental Science, 2023, 44(2): 1163-1173. (in Chinese)
    [29]
    QIAO J F, ZHANG W. Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing & Applications, 2018, 29: 1261-1271.
  • Related Articles

    [1]WANG Kang, XU Hang, LI Xiaoli, FAN Zunguan, ZHAO Xin. Research Progress on Data-driven Modeling, Control and Optimization of Flotation Process[J]. Journal of Beijing University of Technology, 2023, 49(4): 485-506. DOI: 10.11936/bjutxb2022090002
    [2]LI Xiaoli, LIU Minghua, WANG Kang, LIU Zhiqiang, LI Guihai. Research Progress on Technology and Control of Acid Production With Smelting Flue Gas[J]. Journal of Beijing University of Technology, 2023, 49(4): 475-484. DOI: 10.11936/bjutxb2022080005
    [3]LIU Hongxu, HAN Honggui, YANG Hongyan. Knowledge-Data-driven Modeling Method of Multi-time Scale Sampling System[J]. Journal of Beijing University of Technology, 2023, 49(4): 395-402. DOI: 10.11936/bjutxb2022090001
    [4]Groundwater Vulnerability Zoning to Nitrate Based on DRASTIC-LU Parameters and Data-driven Models[J]. Journal of Beijing University of Technology, 2021, 47(12): 1338-1359. DOI: 10.11936/bjutxb2021010022
    [5]ZHANG Lu, ZHANG Jiacheng, HAN Honggui, QIAO Junfei. Optimal Control for Municipal Wastewater Treatment Process Based on Dynamic Decomposed Multiobjective Particle Swarm Optimization[J]. Journal of Beijing University of Technology, 2021, 47(3): 239-245. DOI: 10.11936/bjutxb2019120023
    [6]LIANG Hui, TONG Chao-nan, WANG Heng. Hot Rolling Thickness Modeling and Control Method Based on Data Driven[J]. Journal of Beijing University of Technology, 2012, 38(12): 1913-1920. DOI: 10.3969/j.issn.0254-0037.2012.12.027
    [7]XU Ting, SUN Xiao-duan, WANG Wei-li, HE Yu-long. Highway Accidents Statistical Analysis With Panel Data Model[J]. Journal of Beijing University of Technology, 2010, 36(4): 495-499. DOI: 10.3969/j.issn.0254-0037.2010.04.011
    [8]YU Nai-gong, RUAN Xiao-gang. Penicillin Fermentation Process Optimal Control Strategy Based on Cellular Automata Model[J]. Journal of Beijing University of Technology, 2007, 33(2): 150-154,165. DOI: 10.3969/j.issn.0254-0037.2007.02.008
    [9]LI Ming-ai, RUAN Xiao-gang. Optimal Control Based on Continuous Hopfield Neural Network[J]. Journal of Beijing University of Technology, 2004, 30(1): 27-30. DOI: 10.3969/j.issn.0254-0037.2004.01.006
    [10]Tu Xiangchu. A Variable-Structure Optimal Control System[J]. Journal of Beijing University of Technology, 1993, 19(4): 27-30.
  • Cited by

    Periodical cited type(4)

    1. 宗自强,李玉丽. 基于海洋捕食者算法的医院空气净化系统研究. 电器工业. 2025(02): 62-66 .
    2. 朱海波,梅凡民,景振江. 关中农村生活污水减污降碳协同治理技术研究. 陕西农业科学. 2025(03): 82-86+104 .
    3. 薛同来,张政,高天宇,郜煜涛,杨超,韩菲. 基于模糊控制的污水处理曝气系统溶解氧控制方案研究. 北京水务. 2024(05): 31-36 .
    4. 张勇,赵景波,权利敏. 基于卷积层-注意力机制的长短期记忆网络出水氨氮浓度预测方法. 化工学报. 2024(12): 4679-4688 .

    Other cited types(3)

Catalog

    Article views (179) PDF downloads (53) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return