Citation: | ZHANG Lu, ZHANG Jiacheng, HAN Honggui, QIAO Junfei. Optimal Control for Municipal Wastewater Treatment Process Based on Dynamic Decomposed Multiobjective Particle Swarm Optimization[J]. Journal of Beijing University of Technology, 2021, 47(3): 239-245. DOI: 10.11936/bjutxb2019120023 |
To realize the optimal operation of the performance indices in municipal wastewater treatment process (MWWTP), an optimal control based on dynamic decomposed multiobjective particle swarm optimization (OC-DDMOPSO) was proposed in this paper. First, the dynamic performance models were formulated by using the adaptive kernel functions, and the optimization objectives could be then obtained. Second, multiobjective particle swarm optimization algorithm based on the dynamic decomposed archive was developed, and the optimal set-points could be then derived. Third, a predictive control strategy was designed to trace the obtained optimal set-points, and the optimal control of MWWTP could be then realized. Finally, the proposed OC-DDMOPSO strategy was tested on the benchmark simulation model No.1. Results show that OC-DDMOPSO can not only facilitate the stable operation of MWWTP, but also guarantee the effluent qualities, as well as reduce the operation cost.
[1] |
HAN H G, QIAO J F. Nonlinear model-predictive control for industrial processes: an application to wastewater treatment process[J]. IEEE Transactions on Industrial Electronics, 2013, 61(4): 1970-1982.
|
[2] |
乔俊飞, 鞠岩, 韩红桂. 基于自组织随机权神经网络的BOD软测量[J]. 北京工业大学学报, 2016, 42(10): 1451-1460. doi: 10.11936/bjutxb2016040021
QIAO J F, JU Y, HAN H G. BOD Soft-sensing based on SONNRW[J]. Journal of Beijing University of Technology, 2016, 42(10): 1451-1460. (in Chinese) doi: 10.11936/bjutxb2016040021
|
[3] |
韩红桂, 伍小龙, 张璐, 等. 城市污水处理过程异常工况识别和抑制研究[J]. 自动化学报, 2018, 44(11): 1971-1984.
HAN H G, WU X L, ZHANG L, et al. Identification and suppression of abnormal conditions in municipal wastewater treatment process[J]. Acta Automatica Sinica, 2018, 44(11): 1971-1984. (in Chinese)
|
[4] |
QIAO J F, ZHANG W. Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2018, 29(11): 1261-1271. doi: 10.1007/s00521-016-2642-8
|
[5] |
VAN STADEN A J, ZHANG J F, XIA X H. A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges[J]. Applied Energy, 2011, 88(12): 4785-4794. doi: 10.1016/j.apenergy.2011.06.054
|
[6] |
ASHRAFI O, YERUSHALMI L, HAGHIGHAT F. Greenhouse gas emission and energy consumption in wastewater treatment plants: impact of operating parameters[J]. Clean-Soil, Air, Water, 2014, 42(3): 207-220. doi: 10.1002/clen.201200158
|
[7] |
ZHAO L J, CHAI T Y, YUAN D C. Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants[J]. International Journal of Automation and Computing, 2012, 9(6): 627-633. doi: 10.1007/s11633-012-0688-3
|
[8] |
FLORES-ALSINA X, ARNELL M, AMERLINCK Y, et al. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs[J]. Science of the Total Environment, 2014, 466/467: 616-624. doi: 10.1016/j.scitotenv.2013.07.046
|
[9] |
AMAND L, CARLSSON B. Optimal aeration control in a nitrifying activated sludge process[J]. Water Research, 2012, 46(7): 2101-2110. doi: 10.1016/j.watres.2012.01.023
|
[10] |
ZHAN J X, IKEHATA M, MAYUZUMI M, et al. An aeration control strategy for oxidation ditch processes based on online oxygen requirement estimation[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2013, 68(1): 76-82. doi: 10.2166/wst.2013.226
|
[11] |
ZENG Y H, ZHANG Z J, KUSIAK A, et al. Optimizing wastewater pumping system with data-driven models and a greedy electromagnetism-like algorithm[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(4): 1263-1275. doi: 10.1007/s00477-015-1115-4
|
[12] |
HUANG X Q, HAN H G, QIAO J F. Energy consumption model for wastewater treatment process control[J]. Water Science and Technology, 2013, 67(3): 667-674. doi: 10.2166/wst.2012.563
|
[13] |
DURRENMATT D J. Data mining and data-driven modeling approaches to support wastewater treatment plant operation[J]. Environmental Modelling & Software, 2011, 30(5): 47-56.
|
[14] |
YANG Y, YANG J, ZUO J, et al. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model[J]. Water Research, 2011, 45(11): 3439-3452. doi: 10.1016/j.watres.2011.04.007
|
[15] |
乔俊飞, 王亚清, 柴伟. 基于迭代ADP算法的污水处理过程最优控制[J]. 北京工业大学学报, 2018, 44(2): 200-206. doi: 10.11936/bjutxb2017030032
QIAO J F, WANG Y Q, CHAI W. Optimal control based on iterative ADP for wastewater treatment process[J]. Journal of Beijing University of Technology, 2018, 44(2): 200-206. (in Chinese) doi: 10.11936/bjutxb2017030032
|
[16] |
DUZINKIEWICZ K, BRDYS M A, KUREK W, et al. Genetic hybrid predictive controller for optimized dissolved-oxygen tracking at lower control level[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1183-1192. doi: 10.1109/TCST.2008.2004499
|
[17] |
GUERRERO J, GUISASOLA A, VILANOVA R, et al. Improving the performance of a WWTP control system by model-based setpoint optimisation[J]. Environmental Modelling & Software, 2011, 26(4): 492-497.
|
[18] |
SWEETAPPLE C, FU G, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55: 52-62. doi: 10.1016/j.watres.2014.02.018
|
[19] |
ARAUJO C B, GALLANI S, MULAS M, et al. Sensitivity analysis of optimal operation of an activated sludge process model for economic controlled variable selection[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 9908-9921.
|
[20] |
QIAO J F, HOU Y, HAN H G. Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm[J]. Neural Computing and Applications, 2019, 31(7): 2537-2550. doi: 10.1007/s00521-017-3212-4
|
[1] | HAN Honggui, ZHAO Yaqian, YANG Hongyan, WU Xiaolong. Data-driven Optimal Control Method of Low-carbon for Wastewater Treatment Aeration Process[J]. Journal of Beijing University of Technology, 2024, 50(2): 131-139. DOI: 10.11936/bjutxb2023060011 |
[2] | YAN Qun, LIANG Jiayu, LIU Bo, CUI Jiarui, LI Qing, HUANG Ruoyu. Predictive Control of Alumina Concentration Based on Recursive Subspace[J]. Journal of Beijing University of Technology, 2023, 49(4): 467-474. DOI: 10.11936/bjutxb2022080022 |
[3] | YANG Xu, ZHAO Xulei, TU Rang, ZHANG Tao. Model-free Adaptively Predictive Control for Data Center Precision Air Conditioner Based on Improved Particle Swarm Optimization[J]. Journal of Beijing University of Technology, 2023, 49(4): 424-434. DOI: 10.11936/bjutxb2022110021 |
[4] | YANG Xu, SU Xiaotian, TU Rang, CUI Jiarui, DOU Haoran. Method of Model Predictive Control for Building Air-conditioning System Based on Fuzzy Interval Optimization[J]. Journal of Beijing University of Technology, 2023, 49(3): 346-354. DOI: 10.11936/bjutxb2022010015 |
[5] | ZHANG Yu, ZHANG Yiming, WANG Xuhong. Peak Current Predictive Control Algorithm for Boost Converters[J]. Journal of Beijing University of Technology, 2021, 47(1): 24-31. DOI: 10.11936/bjutxb2019070023 |
[6] | ZUO Guoyu, WANG Xinpeng, LIU Xu. Optimized Balance Control for Bionic Kangaroo Robot During Stance Phase Using Hybrid Particle Swarm Optimization[J]. Journal of Beijing University of Technology, 2017, 43(7): 1003-1008. DOI: 10.11936/bjutxb2016040060 |
[7] | LIU Zhi-feng, ZHANG Sen, CAI Li-gang, YANG Jian-wu, XU Bo, XU Peng. Five-phase S-curve Control Method Based on Particle Swarm Optimization[J]. Journal of Beijing University of Technology, 2015, 41(5): 641-648. DOI: 10.11936/bjutxb2014060067 |
[8] | ZHANG Jie, LIU Guo-ping, WU Min, HE Yong. Networked Predictive Control Based on Improved LS-SVM[J]. Journal of Beijing University of Technology, 2014, 40(7): 1017-1022. |
[9] | JIANG Xiao-xia, YE Ting, LIN Shao-fen, WU Bing. Generalized Predictive Control of Steering System Back Pressure[J]. Journal of Beijing University of Technology, 2012, 38(12): 1766-1771,1874. |
[10] | Huang Hanzhou, Chen Huoping, Han Guangsheng. The Present Condition of Research on Predictive Control[J]. Journal of Beijing University of Technology, 1997, 23(2): 123-130. |