• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CUI Min, YU Tianjing, LI Qianying, DENG Jinxiang, GAO Hongli. Effect of Temperature on the Performance of Ga0.84In0.16As/Ge0.93Sn0.07 Double-junction Solar Cells[J]. Journal of Beijing University of Technology, 2024, 50(10): 1179-1187. DOI: 10.11936/bjutxb2023020027
Citation: CUI Min, YU Tianjing, LI Qianying, DENG Jinxiang, GAO Hongli. Effect of Temperature on the Performance of Ga0.84In0.16As/Ge0.93Sn0.07 Double-junction Solar Cells[J]. Journal of Beijing University of Technology, 2024, 50(10): 1179-1187. DOI: 10.11936/bjutxb2023020027

Effect of Temperature on the Performance of Ga0.84In0.16As/Ge0.93Sn0.07 Double-junction Solar Cells

More Information
  • Received Date: February 22, 2023
  • Revised Date: March 27, 2024
  • Based on the Varshni model-temperature dependence of the energy gap and the empirical Caughey-Thomas model, Ga0.84In0.16As/Ge0.93Sn0.07 double-junction solar cells under lattice matching were numerically simulated. In this study, the band gap Eg, reverse saturation current density J0 of the materials and the photovoltaic properties on temperatures were explored detailedly. Results show that band gaps of the Ga0.84In0.16As and Ge0.93Sn0.07sub-cells decrease approximately linearly in the temperature range of 250-400 K with the rates of -0.412 meV/K and -0.274 meV/K, respectively. The J0 of the subcell is exponentially enhanced as the material temperature increases. Temperature coefficients of Jsc and Voc are about 12.86 μA/(cm2·K) and -3.48 mV/K, respectively. The FF decreases from 0.87 to 0.78, and the η reduces from 31.39% to 17.69% when the temperature increases from 250 K to 400 K. In addition, the temperature coefficients of the Jsc, Voc, FF and η of the Ge0.93Sn0.07 sub-cells are about 6.59 μA/(cm2·K), - 1.76 mV/K, -0.213%/K and -0.042%/K, respectively, which are better than the temperature performance of the Ge sub-cells in the traditional Ⅲ-Ⅴ multi-junction cells. The results in the paper can be conducive to promote the low-cost development and application of GaInAs/GeSn-based multi-junction solar cells.

  • [1]
    GEISZ J F, FRANCE R M, SCHULTE K L, et al. Six-junction Ⅲ-Ⅴ solar cells with 47.1% conversion efficiency under 143 Suns concentration[J]. Nature Energy, 2020, 5(4): 326-335. doi: 10.1038/s41560-020-0598-5
    [2]
    CHENG R, CHEN Z, YUAN S, et al. Mobility enhancement techniques for Ge and GeSn MOSFETs[J]. Journal of Semiconductors, 2021, 42(2): 023101. doi: 10.1088/1674-4926/42/2/023101
    [3]
    LIU M, YANG D, SHKURMANOV A, et al. Epitaxial GeSn/Ge vertical nanowires for p-type field-effect transistors with enhanced performance[J]. ACS Applied Nano Materials, 2020, 4(1): 94-101.
    [4]
    DCOSTA V R, COOK C S, BIRDWELL A G, et al. Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny∕Ge1-xSix study[J]. Physical Review B, 2006, 73(12): 1252016-1252071.
    [5]
    CHUANG Y, LIU C Y, KAO H S, et al. Schottky barrier height modulation of metal/n-GeSn contacts featuring low contact resistivity by in situ chemical vapor deposition doping and NiGeSn alloy formation[J]. Applied Electronic Materials, 2021, 3(3): 1334-1340. doi: 10.1021/acsaelm.0c01108
    [6]
    CHEN R, LIN H, HUO Y, et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy[J]. Applied Physics Letters, 2011, 99(18): 061109.
    [7]
    ZHENG J, LIU Z, ZHANG Y W, et al. Growth of high-Sn content (28%) GeSn alloy films by sputtering epitaxy[J]. Journal of Crystal Growth, 2018, 492: 29-34. doi: 10.1016/j.jcrysgro.2018.04.008
    [8]
    SCHWARZ D, FUNK H S, OEHME M, et al. Alloy stability of Ge1-xSnx with Sn concentrations up to 17% utilizing low-temperature molecular beam epitaxy[J]. Journal of Electronic Materials, 2020, 49(9): 5154-5160. doi: 10.1007/s11664-020-08188-6
    [9]
    LI X L, PENG L Z, LIU Z, et al. 30 GHz GeSn photodetector on SOI substrate for 2 μm wavelength application[J]. Photonics Research, 2021, 9(4): 494-500. doi: 10.1364/PRJ.413453
    [10]
    CHANG C, CHANG T W, LI H, et al. Room-temperature 2-μm GeSn P-I-N homojunction light-emitting diode for inplane coupling to group-Ⅳ waveguides[J]. Applied Physics Letters, 2017, 111(14): 141105. doi: 10.1063/1.4999395
    [11]
    WIRTHS S, GEIGER R, DRIESCH V D, et al. Lasing in direct-bandgap GeSn alloy grown on Si[J]. Nature Photonics, 2015, 9(2): 88-92. doi: 10.1038/nphoton.2014.321
    [12]
    KONDRATENKO S V, HYRKA Y V, MAZUR Y I, et al. Photovoltage spectroscopy of direct and indirect bandgaps of strained Ge1-xSnx thin films on a Ge/Si(001) substrate[J]. Acta Materialia, 2019, 171: 40-47. doi: 10.1016/j.actamat.2019.04.004
    [13]
    LI H F, BROUILLET J, SALAS A, et al. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics[J]. Optical Materials Express, 2013, 3(9): 1385-1396. doi: 10.1364/OME.3.001385
    [14]
    RAMASAMY K, KOTULA P G, FIDLER A F, et al. SnxGe1-x alloy nanocrystals: a first step toward solution-processed group Ⅳ photovoltaics[J]. Chemistry of Materials, 2015, 27(13): 4640-4649. doi: 10.1021/acs.chemmater.5b01041
    [15]
    ZHU X M, CUI M, WANG Y, et al. GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model[J]. Chinese Physics B, 2022, 31(5): 058801. doi: 10.1088/1674-1056/ac4749
    [16]
    ZHU X M, CUI M, WANG Y, et al. Evaluation of electricity generation on GeSn single-junction solar cell[J]. International Journal of Energy Research, 2022, 46(10): 14526-14533. doi: 10.1002/er.8111
    [17]
    仇恒抗, 姜德鹏, 杨琴, 等. 32%效率三结砷化镓太阳电池设计与在轨应用[J]. 电源技术, 2022, 46(5): 545-548. doi: 10.3969/j.issn.1002-087X.2022.05.019

    QIU H K, JIANG D P, YANG Q, et al. Design and application in orbit 32% efficiency triple junction GaAs solar cell[J]. Chinese Journal of Power Sources, 2022, 46(5): 545-548. (in Chinese) doi: 10.3969/j.issn.1002-087X.2022.05.019
    [18]
    赵耀华, 鲁啸山, 刁彦华, 等. 复合抛物面聚光式太阳能空气集蓄热一体化系统性能研究[J]. 北京工业大学学报, 2022, 48(7): 750-761. doi: 10.11936/bjutxb2020120005

    ZHAO Y H, LU X S, DIAO Y H, et al. Performance investigation of compound parabolic concentrator integrated collector-storage solar air heater[J]. Journal of Beijing University of Technology, 2022, 48(7): 750-761. (in Chinese) doi: 10.11936/bjutxb2020120005
    [19]
    SINGH P, SINGH S N, LAL M, et al. Temperature dependence of Ⅰ-Ⅴ characteristics and performance parameters of silicon solar cell[J]. Solar Energy Materials and Solar Cells, 2008, 92(12): 1611-1616. doi: 10.1016/j.solmat.2008.07.010
    [20]
    FAN J C C. Theoretical temperature dependence of solar cell parameters[J]. Solar Cells, 1986, 17(2/3): 309-315.
    [21]
    SINGH P, RAVINDRA N M. Temperature dependence of solar cell performance-an analysis[J]. Solar Energy Materials and Solar Cells, 2012, 101: 36-45. doi: 10.1016/j.solmat.2012.02.019
    [22]
    FETEHA M Y, ELDALLAL G M. The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell's performance[J]. Renewable Energy, 2003, 28(7): 1097-1104. doi: 10.1016/S0960-1481(02)00211-2
    [23]
    张小玲, 谢雪松, 吕长志, 等. Ni/AlGaN/GaN结构中肖特基势垒温度特性[J]. 北京工业大学学报, 2008, 34(4): 365-368. https://journal.bjut.edu.cn/bjgydxxb/article/id/e690d85b-57d0-4374-9bf7-80c129e54b5a

    ZHANG X L, XIE X S, LÜ C Z, et al. Temperaturecharacteristics of AlGaN/GaN HEMT's Ni/Auschottky contact[J]. Journal of Beijing University of Technology, 2008, 34(4): 365-368. (in Chinese) https://journal.bjut.edu.cn/bjgydxxb/article/id/e690d85b-57d0-4374-9bf7-80c129e54b5a
    [24]
    ZELAZNA K, WELNA M, MISIEWICZ J, et al. Temperature dependence of energy gap of Ge1-xSnx alloys with x<0.11 studied by photoreflectance[J]. Journal of Physics D: Applied Physics, 2016, 49(23): 235301. doi: 10.1088/0022-3727/49/23/235301
    [25]
    KANG S, KIL Y H, JEONG T S, et al. Temperature dependence of the photocurrent in Ge1-xSnx layers[J]. Journal of the Korean Physical Society, 2016, 69(2): 207-212. doi: 10.3938/jkps.69.207
    [26]
    HART J, ADAM T, KIM Y, et al. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%[J]. Journal of Applied Physics, 2016, 119(9): 093105. doi: 10.1063/1.4942851
    [27]
    ATASER T. The performance analysis of the GaAs/c-InN solar photovoltaic cell hetero-structure: temperature dependence[J]. Optical and Quantum Electronics, 2020, 52(9): 407. doi: 10.1007/s11082-020-02518-y
    [28]
    MAKA A O M, O'DONOVAN T S. Effect of thermal load on performance parameters of solar concentrating photovoltaic: high-efficiency solar cells[J]. Energy and Built Environment, 2022, 3(2): 201-209. doi: 10.1016/j.enbenv.2021.01.004
    [29]
    VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154. doi: 10.1016/0031-8914(67)90062-6
    [30]
    CAUGHEY D M, THOMAS R E. Carrier mobilities in silicon empirically related to doping and field[J]. Proceedings of the IEEE, 1967, 55(12): 2192-2193. doi: 10.1109/PROC.1967.6123
    [31]
    YAMAGUCHI M, TAKAMOTO T, ARAKI K. Super high-efficiency multi-junction and concentrator solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(18/19): 3068-3077.
    [32]
    ANSI, ASTM. Standard test methods for measurement of electrical performance and spectral response of nonconcentrator multijunction photovoltaic cells and modules: E2236-2010[S]. New York: ANSI, 2010.
    [33]
    BASU P K. Theory of optical processes in semiconductors-bulk and microstructures[M]. New York: Oxford University Press, 1997: 197.
    [34]
    PANKOVE J I. Optical processes in semiconductors[M]. Engle-wood Cliffs: Prentice-Hall Inc., 1971.
    [35]
    PRIDHAM G J. Physics of semiconductor devices[J]. IEE Review, 1970, 16(1): 34.
    [36]
    KURTZ S R, FAINE P, OLSON J M. Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter[J]. Journal of Applied Physics, 1990, 68(4): 1890-1895. doi: 10.1063/1.347177
    [37]
    DORKEL J M, LETURCQ P. Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level[J]. Solid-State Electronics, 1981, 24(9): 821-825. doi: 10.1016/0038-1101(81)90097-6
    [38]
    HALL R N. Recombination processes in semiconductors[J]. The IEE-Part B: Electronic and Communication Engineering, 1959, 106(17S), 923-931.
    [39]
    WEN H Q, PINKIE B, BELLOTTI E. Direct and phonon-assisted indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs computed using Green's function formalism[J]. Journal of Applied Physics, 2015, 118(1): 015702. doi: 10.1063/1.4923059
    [40]
    GREEN M A. Accuracy of analytical expressions for solar cell fill factors[J]. Solar Cells, 1982, 7(3): 337-340. doi: 10.1016/0379-6787(82)90057-6
    [41]
    BOTHA J R, LEITCHA W R. Temperature dependence of the photoluminescence properties and band gap energy of InxGa1-xAs/GaAs quantum wells[J]. Journal of Electronic Materials, 2000, 29(12): 1362-1371. doi: 10.1007/s11664-000-0120-6
    [42]
    SAHOO G S, MISHRA G P. Use of hetero intrinsic layer in GaAs P-I-N solar cell to improve the intermediate band performance[J]. Materials Science and Engineering: B, 2021, 263: 114862. doi: 10.1016/j.mseb.2020.114862
    [43]
    LI M, ZHENG J, LIU X, et al. Sn composition graded GeSn photodetectors on Si substrate with cutoff wavelength of 3.3 μm for mid-infrared Si photonics[J]. Applied Physics Letters, 2022, 120(12): 121103. doi: 10.1063/5.0084940
    [44]
    ADACHI S, TU C W. Physical properties of Ⅲ-Ⅴ semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs and lnGaAsP[J]. Physics Today, 1994, 47(2): 99-100.
    [45]
    ŠČAJEV P, SORIŪT V, KREIZA G, et al. Temperature dependent carrier lifetime, diffusion coefficient, and diffusion length in Ge0.95Sn0.05 epilayer[J]. Journal of Applied Physics, 2020, 128(11): 115103.
    [46]
    SOTOODEH M, KHALID A H, REZAZADEH A A. Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes[J]. Journal of Applied Physics, 2000, 87(6): 2890-2900. doi: 10.1063/1.372274
    [47]
    OMAR M A, REGGIANI L. Drift velocity and diffusivity of hot carriers in germanium: model calculations[J]. Solid State Electronics, 1987, 30(12): 1351-1354. doi: 10.1016/0038-1101(87)90063-3
    [48]
    MARTIN D, ALGORA C. Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling[J]. Semiconductor Science and Technology, 2004, 19(8): 1040. doi: 10.1088/0268-1242/19/8/015
    [49]
    SYMKO DAVIES M, GRIGGS M J, KAYES B M, et al. P-N junction heterostructure device physics model of a four junction solar cell[J]. High and Low Concentration for Solar Electric Applications, 2006, 6339: 633901-633908.
    [50]
    PAIGE E G S. The drift mobility of electrons and holes in germanium at low temperatures[J]. Journal of Physics and Chemistry of Solids, 1960, 16(3/4): 207-219.
    [51]
    VIRGILIO M, MANGANELLI C L, GROSSO G, et al. Photoluminescence, recombination rate, and gain spectra in optically excited n-type and tensile strained germanium layers[J]. Journal of Applied Physics, 2013, 114(24): 243102. doi: 10.1063/1.4849855
    [52]
    BOUSSAIRI B, ABDELATIF J, ARTUR T, et al. InGaP/Ge and GaAs/Ge double-junction solar cells for thermal-CPV hybrid energy systems[J]. AIP Conference Proceedings, 2018, 2012(1): 110001.
    [53]
    HUANG T H, LO H, LO C, et al. Photovoltaic performance of Ge-subcell evaluated directly in Ge-based triple-junction solar cells[J]. Journal of Solid State Science and Technology, 2016, 5(10): Q266-Q270. doi: 10.1149/2.0181610jss
    [54]
    张春福, 张进成, 马晓华, 等. 半导体光伏器件[M]. 西安: 西安电子科技大学出版社, 2015: 127-128.

Catalog

    Article views (72) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return