• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZHANG Yongzhe, LI Songyu, CHEN Xiaoqing. Recent Progress of Two-dimensional Material Photodetectors Based on Photoelectronic Conversion[J]. Journal of Beijing University of Technology, 2020, 46(10): 1149-1166. DOI: 10.11936/bjutxb2020040015
Citation: ZHANG Yongzhe, LI Songyu, CHEN Xiaoqing. Recent Progress of Two-dimensional Material Photodetectors Based on Photoelectronic Conversion[J]. Journal of Beijing University of Technology, 2020, 46(10): 1149-1166. DOI: 10.11936/bjutxb2020040015

Recent Progress of Two-dimensional Material Photodetectors Based on Photoelectronic Conversion

More Information
  • Received Date: April 28, 2020
  • Available Online: August 03, 2022
  • Published Date: October 09, 2020
  • Owing to the unique physical structure and excellent photoelectronic properties, two-dimensional (2D) materials have attracted more and more interest from researchers, which shows a huge potential for the applications of photodetection area. The 2D material-based photodetectors currently studied mainly belong to photon detectors. Their photodetecting porcess involves the directly photoelectronic conversion. The key point to the accomplishment of the 2D material photodetectors of high performance is to fully utilize photo-to-electric conversion mechanisms and take their advantages in the aspects of device performances and functions. By tracking previous works of the authors' research, the directly photoelectronic conversion mechanisms of photodetectors was investigated and the recent progress of 2D material-based photodetectors in terms of their performance enhancement, development of photoelectronic conversion mechanisms and structure design of devices was summarized. Finally, an outlook on the challenges and opportunities for 2D material photodetectors was presented.

  • [1]
    XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12):899-907. doi: 10.1038/nphoton.2014.271
    [2]
    KOPPENS F H, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10):780-793. doi: 10.1038/nnano.2014.215
    [3]
    YAO J, YANG G. 2D material broadband photodetectors[J]. Nanoscale, 2020, 12(2):454-476. doi: 10.1039/C9NR09070C
    [4]
    LONG M, WANG P, FANG H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2018, 29(19):1803807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adfm.201803807
    [5]
    SINGH E, SINGH P, KIM K S, et al. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11061-11105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69cbd8e34ae2419392c8a4f21fd087a0
    [6]
    GONG C H, HU K, WANG X P, et al. 2D Nanomaterial arrays for electronics and optoelectronics[J]. Advanced Functional Materials, 2018, 28(16):1706559. doi: 10.1002/adfm.201706559
    [7]
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699-712. doi: 10.1038/nnano.2012.193
    [8]
    LI J, NIU L, ZHENG Z, et al. Photosensitive graphene transistors[J]. Advanced Materials, 2014, 26(31):5239-5273. doi: 10.1002/adma.201400349
    [9]
    BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539. doi: 10.1021/acsnano.5b05556
    [10]
    XIA F, WANG H, HWANG J C M, et al. Black phosphorus and its isoelectronic materials[J]. Nature Reviews Physics, 2019, 1(5):306-317. doi: 10.1038/s42254-019-0043-5
    [11]
    MANNIX A J, KIRALY B, HERSAM M C, et al. Synthesis and chemistry of elemental 2D materials[J]. Nature Reviews Chemistry, 2017, 1(2):0014. doi: 10.1038/s41570-016-0014
    [12]
    YIN L, HE P, CHENG R, et al. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices[J]. Nature Communications, 2019, 10(1):4133. doi: 10.1038/s41467-019-12200-x
    [13]
    GONG C, ZHANG H J, WANG W H, et al. Band alignment of two-dimensional transition metal dichalcogenides:application in tunnel field effect transistors[J]. Applied Physics Letters, 2013, 103(5):053513. doi: 10.1063/1.4817409
    [14]
    LIU C, CHEN H, HOU X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory[J]. Nature Nanotechnology, 2019, 14(7):662-667. doi: 10.1038/s41565-019-0462-6
    [15]
    XIE C, MAK C, TAO X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene[J]. Advanced Functional Materials, 2017, 27(19):1603886. doi: 10.1002/adfm.201603886
    [16]
    FURCHI M M, POLYUSHKIN D K, POSPISCHIL A, et al. Mechanisms of photoconductivity in atomically thin MoS2[J]. Nano Letters, 2014, 14(11):6165-6170. doi: 10.1021/nl502339q
    [17]
    GONG X, TONG M, XIA Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948):1665-1667. doi: 10.1126/science.1176706
    [18]
    XU H, HAN X, DAI X, et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors[J]. Advanced Materials, 2018, 30(13):1706561. doi: 10.1002/adma.201706561
    [19]
    YIN Z, LI H, LI H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1):74-80. doi: 10.1021/nn2024557
    [20]
    LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7):497-501. doi: 10.1038/nnano.2013.100
    [21]
    ZHANG B Y, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4:1811. doi: 10.1038/ncomms2830
    [22]
    KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368. doi: 10.1038/nnano.2012.60
    [23]
    GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371. doi: 10.1038/nphoton.2017.75
    [24]
    POLAT E O, MERCIER G, NIKITSKIY I, et al. Flexible graphene photodetectors for wearable fitness monitoring[J]. Science Advances, 2019, 5(9):eaaw7846. doi: 10.1126/sciadv.aaw7846
    [25]
    NI Z, MA L, DU S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10):9854-9862. doi: 10.1021/acsnano.7b03569
    [26]
    KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1):176-180. doi: 10.1002/adma.201402471
    [27]
    WU H, SI H, ZHANG Z, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector[J]. Advanced Science, 2018, 5(12):1801219. doi: 10.1002/advs.201801219
    [28]
    NGUYEN D A, OH H M, DUONG N T, et al. Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2018, 10(12):10322-10329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc49e9b18b1c75331919e41a29f29f35
    [29]
    YOU C Y, ZHANG G Q, DENG W J, et al. Cascade-type energy band design of a black phosphorus photodetector with high performance[J]. Journal of Materials Chemistry C, 2019, 7(8):2232-2239. doi: 10.1039/C8TC05735D
    [30]
    ZHANG W, HUANG J K, CHEN C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Advanced Materials, 2013, 25(25):3456-3461. doi: 10.1002/adma.201301244
    [31]
    KUFER D, KONSTANTATOS G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed[J]. Nano Letters, 2015, 15(11):7307-7313. doi: 10.1021/acs.nanolett.5b02559
    [32]
    WU J Y, CHUN Y T, LI S, et al. Broadband MoS2 field-effect phototransistors:ultrasensitive visible-light photoresponse and negative infrared photoresponse[J]. Advanced Materials, 2018, 30(7):1705880. doi: 10.1002/adma.201705880
    [33]
    TU L, CAO R, WANG X, et al. Ultrasensitive negative capacitance phototransistors[J]. Nature Communications, 2020, 11(1):101. doi: 10.1038/s41467-019-13769-z
    [34]
    LI S, CHEN X, LIU F, et al. Enhanced Performance of a CVD MoS2 photodetector by chemical in situ n-type doping[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11636-11644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ab281f8d0f780f0d2358c0cc6193797
    [35]
    HUANG H, WANG J, HU W, et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect[J]. Nanotechnology, 2016, 27(44):445201. doi: 10.1088/0957-4484/27/44/445201
    [36]
    ISLAND J O, BLANTER S I, BUSCEMA M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12):7853-7858. doi: 10.1021/acs.nanolett.5b02523
    [37]
    GUO Q, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 2016, 16(7):4648-4655. doi: 10.1021/acs.nanolett.6b01977
    [38]
    HUANG M, WANG M, CHEN C, et al. Broadband black-phosphorus photodetectors with high responsivity[J]. Advanced Materials, 2016, 28(18):3481-3485. doi: 10.1002/adma.201506352
    [39]
    HUANG L, TAN W C, WANG L, et al. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power[J]. ACS Applied Materials & Interfaces, 2017, 9(41):36130-36136. http://www.ncbi.nlm.nih.gov/pubmed/28959887
    [40]
    FANG H, HU W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12):1700323. doi: 10.1002/advs.201700323
    [41]
    CHOI M S, QU D, LEE D, et al. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics[J]. ACS Nano, 2014, 8(9):9332-9340. doi: 10.1021/nn503284n
    [42]
    TANG Y, WANG Z, WANG P, et al. WSe2 photovoltaic device based on intramolecular p-n junction[J]. Small, 2019, 15(12):1805545. doi: 10.1002/smll.201805545
    [43]
    JI H G, SOLIS-FERNANDEZ P, YOSHIMURA D, et al. Chemically tuned p-and n-type WSe2 monolayers with high carrier mobility for advanced electronics[J]. Advanced Materials, 2019, 31(42):1903613. doi: 10.1002/adma.201903613
    [44]
    ZHANG K, ZHAI J Y, WANG Z L. A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect[J]. 2D Materials, 2018, 5(3):035038. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9427562
    [45]
    HUO N, KONSTANTATOS G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction[J]. Nature Communications, 2017, 8(1):572. doi: 10.1038/s41467-017-00722-1
    [46]
    LI H M, LEE D, QU D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide[J]. Nature Communications, 2015, 6:6564. doi: 10.1038/ncomms7564
    [47]
    WI S, KIM H, CHEN M, et al. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping[J]. ACS Nano, 2014, 8(5):5270-5281. doi: 10.1021/nn5013429
    [48]
    WANG G, ZHANG M, CHEN D, et al. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors[J]. Nature Communications, 2018, 9(1):5168. doi: 10.1038/s41467-018-07555-6
    [49]
    SEO S Y, PARK J, PARK J, et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe[J]. Nature Electronics, 2018, 1(9):512-517. doi: 10.1038/s41928-018-0129-6
    [50]
    POSPISCHIL A, FURCHI M M, MUELLER T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nature Nanotechnology, 2014, 9(4):257-261. doi: 10.1038/nnano.2014.14
    [51]
    GROENENDIJK D J, BUSCEMA M, STEELE G A, et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device[J]. Nano Letters, 2014, 14(10):5846-5852. doi: 10.1021/nl502741k
    [52]
    BUSCEMA M, GROENENDIJK D J, STEELE G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating[J]. Nature Communications, 2014, 5:4651. doi: 10.1038/ncomms5651
    [53]
    BAUGHER B W, CHURCHILL H O, YANG Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4):262-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f828a4ce3fdf3b788a2995fafe7cb1b8
    [54]
    WU E, XIE Y, ZHANG J, et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation[J]. Science Advances, 2019, 5(5):eaav3430. doi: 10.1126/sciadv.aav3430
    [55]
    WU G, TIAN B, LIU L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains[J]. Nature Electronics, 2020, 3(1):43-50. doi: 10.1038/s41928-019-0350-y
    [56]
    DENG W J, WANG Y, YOU C Y, et al. Field enhanced in-plane homostructure in a pure MoSe2 phototransistor for the efficient separation of photo-excited carriers[J]. Journal of Materials Chemistry C, 2019, 7(5):1182-1187. doi: 10.1039/C8TC04783A
    [57]
    SZE S M, NG K K. Physics of semiconductor devices[M]. 3rd ed. Hoboken:Wiley, 2006:680-682.
    [58]
    GONG F, FANG H, WANG P, et al. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions[J]. Nanotechnology, 2017, 28(48):484002. doi: 10.1088/1361-6528/aa9172
    [59]
    LUO M, WU F, LONG M, et al. WSe2/Au vertical Schottky junction photodetector with low dark current and fast photoresponse[J]. Nanotechnology, 2018, 29(44):444001. doi: 10.1088/1361-6528/aada68
    [60]
    DAI M, CHEN H, FENG R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction[J]. ACS Nano, 2018, 12(8):8739-8747. doi: 10.1021/acsnano.8b04931
    [61]
    LIU X, SUN G, CHEN P, et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure[J]. Nano Research, 2018, 12(2):339-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmyj-z201902013
    [62]
    LIU J, LIU X, CHEN Z, et al. Tunable schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer[J]. Nano Research, 2018, 12(2):463-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmyj-z201902030
    [63]
    RATHI S, LEE I, LIM D, et al. Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices[J]. Nano Letters, 2015, 15(8):5017-5024. doi: 10.1021/acs.nanolett.5b01030
    [64]
    DENG W J, CHEN Y F, YOU C Y, et al. High detectivity from a lateral graphene-MoS2 schottky photodetector grown by chemical vapor deposition[J]. Advanced Electronic Materials, 2018, 4(9):1800069. doi: 10.1002/aelm.201800069
    [65]
    LIU B Y, CHEN Y F, YOU C Y, et al. High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions[J]. Journal of Alloys and Compounds, 2019, 779:140-146. doi: 10.1016/j.jallcom.2018.11.165
    [66]
    DENG W J, CHEN Y F, YOU C Y, et al. Visible-infrared dual-mode MoS2-graphene-MoS2 phototransistor with high ratio of the I-ph/I-dark[J]. 2D Materials, 2018, 5(4):045027. doi: 10.1088/2053-1583/aadc79
    [67]
    CHEN P, ZHANG Z, DUAN X, et al. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices[J]. Chemical Society Reviews, 2018, 47(9):3129-3151. doi: 10.1039/C7CS00887B
    [68]
    NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298):aac9439. doi: 10.1126/science.aac9439
    [69]
    LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9):16042. doi: 10.1038/natrevmats.2016.42
    [70]
    LI M Y, CHEN C H, SHI Y M, et al. Heterostructures based on two-dimensional layered materials and their potential applications[J]. Materials Today, 2016, 19(6):322-335. doi: 10.1016/j.mattod.2015.11.003
    [71]
    CHEN Y, WANG X, WU G, et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure[J]. Small, 2018, 14(9):1703293. doi: 10.1002/smll.201703293
    [72]
    YANG Z Y, LIAO L, GONG F, et al. WSe2/GeSe heterojunction photodiode with giant gate tunability[J]. Nano Energy, 2018, 49:103-108. doi: 10.1016/j.nanoen.2018.04.034
    [73]
    XIE Y, WU E, ZHANG J, et al. Gate-tunable photodetection/voltaic device based on BP/MoTe2 heterostructure[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14215-14221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcbe87a5b30b33ba8cfc2d1c155e74da
    [74]
    LEE J B, LIM Y R, KATIYAR A K, et al. Direct synthesis of a self-assembled WSe2/MoS2 heterostructure array and its optoelectricla properties[J]. Advanced Materials, 2019, 31(43):1904194. doi: 10.1002/adma.201904194
    [75]
    LEE C H, LEE G H, VAN DER ZANDE A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9):676-681. doi: 10.1038/nnano.2014.150
    [76]
    VARGHESE A, SAHA D, THAKAR K, et al. Near-direct bandgap WSe2/ReS2 Type-Ⅱ pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics[J]. Nano Letters, 2020, 20(3):1707-1717. doi: 10.1021/acs.nanolett.9b04879
    [77]
    WANG G C, LI L, FAN W H, et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J]. Advanced Functional Materials, 2018, 28(22):1800339. doi: 10.1002/adfm.201800339
    [78]
    ROSS J S, RIVERA P, SCHAIBLEY J, et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction[J]. Nano Letters, 2017, 17(2):638-643. doi: 10.1021/acs.nanolett.6b03398
    [79]
    GAO A, LAI J, WANG Y, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3):217-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=337c5381ce015052830d96e6dd26e131
    [80]
    WANG Y, LIU E, GAO A, et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor[J]. ACS Nano, 2018, 12(9):9513-9520. doi: 10.1021/acsnano.8b04885
    [81]
    DENG W, YOU C, CHEN X, et al. High-performance photodiode based on atomically thin WSe2/MoS2 nanoscroll integration[J]. Small, 2019, 15(30):1901544. doi: 10.1002/smll.201901544
    [82]
    LU Z, XU Y, YU Y, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9):1907951. doi: 10.1002/adfm.201907951
    [83]
    LI B, SHI G, LEI S, et al. 3D band diagram and photoexcitation of 2D-3D semiconductor heterojunctions[J]. Nano Letters, 2015, 15(9):5919-5925. doi: 10.1021/acs.nanolett.5b02012
    [84]
    YIM C, MCEVOY N, RIAZIMEHR S, et al. Wide spectral photoresponse of layered platinum diselenide-based photodiodes[J]. Nano Letters, 2018, 18(3):1794-1800. doi: 10.1021/acs.nanolett.7b05000
    [85]
    ZENG L H, LIN S H, LI Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction[J]. Advanced Functional Materials, 2018, 28(16):1705970. doi: 10.1002/adfm.201705970
    [86]
    YANG T, WANG X, ZHENG B, et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures[J]. ACS Nano, 2019, 13(7):7996-8003. doi: 10.1021/acsnano.9b02676
  • Related Articles

    [1]DONG Qiao, CAO Xinyuan, FU Lixiang, LI Jiawang, GU Xingyu, SUN Xiaofeng. Research Status and Prospect of Road Photovoltaic Noise Barriers and its Photovoltaic-Storage-Charging System[J]. Journal of Beijing University of Technology. DOI: 10.11936/bjutxb2024060003
    [2]WANG Chao, CUI Ao, ZHOU Bochao. Simulation Evaluation of Energy Efficiency in Pavement Integrated Photovoltaic/Thermal Based on Multi-physical Field Coupling[J]. Journal of Beijing University of Technology. DOI: 10.11936/bjutxb2023090012
    [3]LI Dong, JIN Liu, DU Xiuli, DU Min. Mechanism of Size Effect of Concrete Under Biaxial Compression[J]. Journal of Beijing University of Technology, 2017, 43(8): 1190-1198. DOI: 10.11936/bjutxb2016070003
    [4]YU Xiao-hua, WANG Yuan, ZHAN Zhao-lin, RONG Ju, LI Li, LIU Zhong. Size Effect of the Lattice Distortion Energy of Nanoparticle[J]. Journal of Beijing University of Technology, 2014, 40(6): 928-931. DOI: 10.3969/j.issn.0254-0037.2014.06.021
    [5]LI Zhen-bao, SONG Jia, DU Xiu-li, YANG Xiu-guang. Experimental Study on Size Effect of Compressive Response of Concrete Confined by Square Stirrups[J]. Journal of Beijing University of Technology, 2014, 40(2): 223-230. DOI: 10.3969/j.issn.0254-0037.2014.02.010
    [6]DU Xiu-li, FU Jia, ZHANG Jian-wei, LI Qian. Experiments on Size Effect of the Reinforced High-strength Concrete Column Under Axial Loading[J]. Journal of Beijing University of Technology, 2012, 38(10): 1491-1497. DOI: 10.3969/j.issn.0254-0037.2012.10.010
    [7]WEI Zhong-hua, WANG Shan. Research on Color Effect in Highway Landscape[J]. Journal of Beijing University of Technology, 2004, 30(3): 329-332. DOI: 10.3969/j.issn.0254-0037.2004.03.015
    [8]Li Gang, Xu Xiangqian, Yao Yuqiu. Theoretical Study on the Effect of Optical Frequency Mixing[J]. Journal of Beijing University of Technology, 1990, 16(3): 10-16.
    [9]Zhang Qi-nian, Wang Yi-ming. The Anomalous Photovoltaic Effect in Ferroelectrics[J]. Journal of Beijing University of Technology, 1984, 10(1): 137-150.
    [10]Bai Tong-yun. A Research on Josephson-Effect Harmonic Mixer[J]. Journal of Beijing University of Technology, 1982, 8(4): 54-61.
  • Cited by

    Periodical cited type(3)

    1. 牛佳佳,刘铭,邢伟荣,李乾,折伟林. 基于低维材料的光电探测器的发展. 红外. 2022(03): 8-15+21 .
    2. 何嘉玉,陈克强,冀婷,石林林,冯琳,李国辉,郝玉英,张晗,崔艳霞. 基于二维材料的快速响应金属-半导体-金属结构光电探测器研究进展. 发光学报. 2022(05): 745-762 .
    3. 安恒,李得天,文轩,杨生胜,张永哲,王鹢,张晨光,王俊,曹洲. 基于石墨烯的空间辐射探测传感器设计与试验研究. 真空与低温. 2022(05): 601-608 .

    Other cited types(21)

Catalog

    Article views (506) PDF downloads (119) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return