Citation: | ZHENG Zilong, ZHOU Rongkun, HU Shuangyuan, WANG Ruzhi, ZHANG Yongzhe. Charge Transfer States in Organic Photovoltaic Materials[J]. Journal of Beijing University of Technology, 2020, 46(10): 1167-1179. DOI: 10.11936/bjutxb2020040012 |
The sector of organic solar cells (OSCs) is developing very rapidly. The charge-transfer (CT) states, formed at the interface between electron-donor (D) and electron-acceptor (A) materials, play a significant role in the photoelectric physical processes, such as exciton dissociation, charge separation and recombination. Since the introduction of the D-A mixed heterojunction in the active layer, the CT states have been focused by many experimental and theoretical research groups. Following the previous works, the characteristics of CT states were briefly summarized, and the impact on the properties of CT states and the processes of radiative and non-radiative recombination was descibed from morphology configuration, electronic polarization and delocalization at the D-A interface. In addition, the micro-mechanism of photoelectric conversion in the active layer and the challenges faced in the design of novel materials was outlined.
[1] |
CHAMBERLAIN G A. Organic solar-cells-a review[J]. Solar Cells, 1983, 8(1):47-83. doi: 10.1016/0379-6787(83)90039-X
|
[2] |
TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2):183-185. doi: 10.1063/1.96937
|
[3] |
HALLS J J M, WALSH C A, GREENHAM N C, et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376:498-500. doi: 10.1038/376498a0
|
[4] |
YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243):1789-1791. doi: 10.1126/science.270.5243.1789
|
[5] |
LIU J, CHEN S, QIAN D, et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force[J]. Nature Energy, 2016, 1(7):16089. doi: 10.1038/nenergy.2016.89
|
[6] |
HOU J, INGANAS O, FRIEND R H, et al. Organic solar cells based on non-fullerene acceptors[J]. Nat Mater, 2018, 17(2):119-128. http://go.nature.com/2FqxkcK
|
[7] |
QIAN D, ZHENG Z, YAO H, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells[J]. Nat Mater, 2018, 17(8):703-709. doi: 10.1038/s41563-018-0128-z
|
[8] |
ZIFFER M E, JO S B, ZHONG H, et al. Long-lived, non-geminate, radiative recombination of photogenerated charges in a polymer/small-molecule acceptor photovoltaic blend[J]. J Am Chem Soc, 2018, 140(31):9996-10008. doi: 10.1021/jacs.8b05834
|
[9] |
MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361:1094-1098. doi: 10.1126/science.aat2612
|
[10] |
YUAN J, ZHANG Y, ZHOU L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3(4):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b518dfb4b4327dfcaa2592f2f69bbf6
|
[11] |
VANDEWAL K. Interfacial charge transfer states in condensed phase systems[J]. Annual Review of Physical Chemistry, 2016, 67(1):113-133. doi: 10.1146/annurev-physchem-040215-112144
|
[12] |
BREDAS J L, NORTON J E, CORNIL J, et al. Molecular understanding of organic solar cells:the challenges[J]. Accounts of Chemical Research, 2009, 42:1691-1699. doi: 10.1021/ar900099h
|
[13] |
CLARKE T M, DURRANT J R. Charge photogeneration in organic solar cells[J]. Chem Rev, 2010, 110:6736-6767. doi: 10.1021/cr900271s
|
[14] |
MENKE S M, RAN N A, BAZAN G C, et al. Understanding energy loss in organic solar cells:toward a new efficiency regime[J]. Joule, 2017, 2(1):25-35. http://www.dspace.cam.ac.uk/handle/1810/273355
|
[15] |
BURKE T M, SWEETNAM S, VANDEWAL K, et al. Beyond Langevin recombination:how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells[J]. Advanced Energy Materials, 2015, 5(11):1500123-1500134. doi: 10.1002/aenm.201500123
|
[16] |
FEW S, FROST J M, NELSON J. Models of charge pair generation in organic solar cells[J]. Phys Chem Chem Phys, 2015, 17(4):2311-2325. doi: 10.1039/C4CP03663H
|
[17] |
LEE M H, DUNIETZ B D, GEVA E. Donor-to-donor vs donor-to-acceptor interfacial charge transfer states in the phthalocyanine-fullerene organic photovoltaic system[J]. J Phys Chem Lett, 2014, 5(21):3810-3816. doi: 10.1021/jz5017203
|
[18] |
MANNA A K, BALAMURUGAN D, CHEUNG M S, et al. Unraveling the mechanism of photoinduced charge transfer in Carotenoid-Porphyrin-C60 molecular triad[J]. J Phys Chem Lett, 2015, 6(7):1231-1237. doi: 10.1021/acs.jpclett.5b00074
|
[19] |
TAMURA H, BURGHARDT I. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation[J]. J Am Chem Soc, 2013, 135(44):16364-16367. doi: 10.1021/ja4093874
|
[20] |
ZHAO Y, LIANG W. Charge transfer in organic molecules for solar cells:theoretical perspective[J]. Chem Soc Rev, 2012, 41(3):1075-1087. doi: 10.1039/C1CS15207F
|
[21] |
ZHENG Z, BRÉDAS J L, COROPCEANU V. Description of the charge transfer states at the Pentacene/C60 interface:combining range-separated hybrid functionals with the polarizable continuum model[J]. J Phys Chem Lett, 2016, 7(13):2616-2621. doi: 10.1021/acs.jpclett.6b00911
|
[22] |
ZHANG C R, SEARS J S, YANG B, et al. Theoretical study of the local and charge-transfer excitations in model complexes of Pentacene-C-60 using tuned range-separated hybrid functionals[J]. Journal of Chemical Theory and Computation, 2014, 10(6):2379-2388. doi: 10.1021/ct500259m
|
[23] |
MINAMI T, ITO S, NAKANO M. Functional dependence of excitation energy for Pentacene/C60 model complex in the nonempirically tuned long-range corrected density functional theory[J]. Int J Quantum Chem, 2013, 113(3):252-256. doi: 10.1002/qua.24023
|
[24] |
MINAMI T, NAKANO M, CASTET F. Nonempirically tuned long-range corrected density functional theory study on local and charge-transfer excitation energies in a Pentacene/C-60 model complex[J]. J Phys Chem Lett, 2011, 2(14):1725-1730. doi: 10.1021/jz200655f
|
[25] |
D'AVINO G, MUCCIOLI L, OLIVIER Y, et al. Charge separation and recombination at polymer-fullerene heterojunctions:delocalization and hybridization effect[J]. J Phys Chem Lett, 2016, 7(3):536-540. doi: 10.1021/acs.jpclett.5b02680
|
[26] |
KRONIK L, KUMMEL S. Dielectric screening meets optimally tuned density functionals[J]. Adv Mater, 2018, 30(41):1706560. doi: 10.1002/adma.201706560
|
[27] |
ZHENG Z, TUMMALA N R, FU Y-T, et al. Charge-transfer states in organic solar cells:understanding the impact of polarization, delocalization, and disorder[J]. ACS Applied Materials & Interfaces, 2017, 9(21):18095-18102. http://europepmc.org/abstract/MED/28481497
|
[28] |
YANG B, YI Y P, ZHANG C R, et al. Impact of electron delocalization on the nature of the charge-transfer states in model Pentacene/C-60 interfaces:a density functional theory study[J]. J Phys Chem C, 2014, 118(48):27648-27656. doi: 10.1021/jp5074076
|
[29] |
YI Y, COROPCEANU V, BREDAS J L. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells[J]. Journal of Materials Chemistry, 2011, 21(5):1479-1486. doi: 10.1039/c0jm02467h
|
[30] |
HAN G C, YI Y P, SHUAI Z G. From molecular packing structures to electronic processes:theoretical simulations for organic solar cells[J]. Advanced Energy Materials, 2018, 8(28):1702743. doi: 10.1002/aenm.201702743
|
[31] |
ZHENG Z L, EGGER D A, BREDAS J L, et al. Effect of solid-state polarization on charge-transfer excitations and transport levels at organic interfaces from a screened range-separated hybrid functional[J]. J Phys Chem Lett, 2017, 8(14):3277-3283. doi: 10.1021/acs.jpclett.7b01276
|
[32] |
AZZOUZI M, YAN J, KIRCHARTZ T, et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics[J]. Phys Rev X, 2018, 8(3):031055. http://www.onacademic.com/detail/journal_1000040455929610_6c7e.html
|
[33] |
SINI G J, SCHUBERT M, RISKO C, et al. On the molecular origin of charge separation at the donor-acceptor interface[J]. Advanced Energy Materials, 2018, 8(12):1702232. doi: 10.1002/aenm.201702232
|
[34] |
BARTELT J A, BEILEY Z M, HOKE E T, et al. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells[J]. Advanced Energy Materials, 2013, 3(3):364-374. doi: 10.1002/aenm.201200637
|
[35] |
HUANG Y, KRAMER E J, HEEGER A J, et al. Bulk heterojunction solar cells:morphology and performance relationships[J]. Chemical Reviews, 2014, 114(14):7006-7043. doi: 10.1021/cr400353v
|
[36] |
VANDEWAL K, ALBRECHT S, HOKE E T, et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces[J]. Nat Mater, 2013, 13:63-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ec5eb18aa87fe56c0daf02939df6b8f
|
[37] |
DEOTARE P B, CHANG W, HONTZ E, et al. Nanoscale transport of charge-transfer states in organic donor-acceptor blends[J]. Nat Mater, 2015, 14(11):1130-1134. doi: 10.1038/nmat4424
|
[38] |
BRIGEMAN A N, FUSELLA M A, YAN Y, et al. Revealing the full charge transfer state absorption spectrum of organic solar cells[J]. Advanced Energy Materials, 2016, 6:1601001. doi: 10.1002/aenm.201601001
|
[39] |
BAKULIN A A, RAO A, PAVELYEV V G, et al. The role of driving energy and delocalized states for charge separation in organic semiconductors[J]. Science, 2012, 335(6074):1340-1344. doi: 10.1126/science.1217745
|
[40] |
JAILAUBEKOV A E, WILLARD A P, TRITSCH J R, et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nat Mater, 2013, 12(1):66-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=632bb4093724c6af94202cd6457245dd
|
[41] |
GRANCINI G, MAIURI M, FAZZI D, et al. Hot exciton dissociation in polymer solar cells[J]. Nat Mater, 2013, 12(1):29-33. http://www.ncbi.nlm.nih.gov/pubmed/23223127
|
[42] |
BENDUHN J, TVINGSTEDT K, PIERSIMONI F, et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells[J]. Nature Energy, 2017, 2(6):17053. doi: 10.1038/nenergy.2017.53
|
[43] |
RAN N A, ROLAND S, LOVE J A, et al. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency[J]. Nat Commun, 2017, 8(1):79-87. doi: 10.1038/s41467-017-00107-4
|
[44] |
LIN Y L, FUSELLA M A, RAND B P. The impact of local morphology on organic donor/acceptor charge transfer states[J]. Advanced Energy Materials, 2018, 8(28):1702816. doi: 10.1002/aenm.201702816
|
[45] |
GUAN Z Q, LI H W, CHENG Y H, et al. Charge-transfer state energy and its relationship with open-circuit voltage in an organic photovoltaic device[J]. J Phys Chem C, 2016, 120(26):14059-14068. doi: 10.1021/acs.jpcc.6b02375
|
[46] |
DEMADIS K D, HARTSHORN C M, MEYER T J. The localized-to-delocalized transition in mixed-valence chemistry[J]. Chemical Reviews, 2001, 101(9):2655-2685. doi: 10.1021/cr990413m
|
[47] |
HUSH N S. Homogeneous and heterogeneous optical and thermal electron transfer[J]. Electrochim Acta, 1968, 13(5):1005-1023. doi: 10.1016/0013-4686(68)80032-5
|
[48] |
HUSH N S. Intervalence-transfer absorption. part 2. theoretical considerations and spectroscopic data[M]//Progress in Inorganic Chemistry. New York: John Wiley & Sons, Inc. 2007: 391-444.
|
[49] |
MULLIKEN R S. Molecular compounds and their spectra. 2.[J]. J Am Chem Soc, 1952, 74(3):811-824. doi: 10.1021/ja01123a067
|
[50] |
CAVE R J, NEWTON M D. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements[J]. Chem Phys Lett, 1996, 249(1/2):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eddac951bb61da13e64d466e6f0cdbf8
|
[51] |
CREUTZ C, NEWTON M D, SUTIN N. Metal-ligand and metal-metal coupling elements[J]. J Photoch Photobio A, 1994, 82(1/2/3):47-59.
|
[52] |
MARCUS R A. Relation between charge-transfer absorption and fluorescence-spectra and the inverted region[J]. J Phys Chem, 1989, 93(8):3078-3086. doi: 10.1021/j100345a040
|
[53] |
CHEN P Y, MEYER T J. Medium effects on charge transfer in metal complexes[J]. Chem Rev, 1998, 98(4):1439-1477. doi: 10.1021/cr941180w
|
[54] |
BUCHACA-DOMINGO E, VANDEWAL K, FEI Z, et al. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy[J]. J Am Chem Soc, 2015, 137(16):5256-5259. doi: 10.1021/ja512410f
|
[55] |
SWEETNAM S, VANDEWAL K, CHO E, et al. Characterizing the polymer:fullerene intermolecular interactions[J]. Chem Mater, 2016, 28(5):1446-1452. doi: 10.1021/acs.chemmater.5b03378
|
[56] |
SULAS D B, YAO K, INTEMANN J J, et al. Open-circuit voltage losses in selenium-substituted organic photovoltaic devices from increased density of charge-transfer states[J]. Chem Mater, 2015, 27(19):6583-6591. doi: 10.1021/acs.chemmater.5b02133
|
[57] |
VANDEWAL K, TVINGSTEDT K, GADISA A, et al. Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells[J]. Phys Rev B, 2010, 81(12):125204. doi: 10.1103/PhysRevB.81.125204
|
[58] |
GOULD I R, NOUKAKIS D, GOMEZJAHN L, et al. Radiative and nonradiative electron-transfer in contact radical-ion pairs[J]. Chem Phys, 1993, 176(2/3):439-456. http://www.sciencedirect.com/science/article/pii/0301010493802536
|
[59] |
KORZDORFER T, BREDAS J L. Organic electronic materials:recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals[J]. Accounts of Chemical Research, 2014, 47(11):3284-3291. doi: 10.1021/ar500021t
|
[60] |
COHEN A J, MORI-SáNCHEZ P, YANG W. Challenges for density functional theory[J]. Chem Rev, 2011, 112(1):289-320. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=70099771&site=ehost-live
|
[61] |
DREUW A, HEAD-GORDON M. Failure of time-dependent density functional theory for long-range charge-transfer excited states:the Zincbacteriochlorin-Bacterlochlorin and Bacteriochlorophyll-Spheroidene complexes[J]. J Am Chem Soc, 2004, 126(12):4007-4016. doi: 10.1021/ja039556n
|
[62] |
PERDEW J P, LEVY M. Physical content of the exact Kohn-Sham orbital energies-band-gaps and derivative discontinuities[J]. Phys Rev Lett, 1983, 51(20):1884-1887. doi: 10.1103/PhysRevLett.51.1884
|
[63] |
DE QUEIROZ T B, KUMMEL S. Tuned range separated hybrid functionals for solvated low bandgap oligomers[J]. J Chem Phys, 2015, 143(3):034101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=583252e5599bf2adae55417182a9890f
|
[64] |
PHILLIPS H, ZHENG Z L, GEVA E, et al. Orbital gap predictions for rational design of organic photovoltaic Materials[J]. Org Electron, 2014, 15(7):1509-1520. doi: 10.1016/j.orgel.2014.03.040
|
[65] |
BAER R, NEUHAUSER D. Density functional theory with correct long-range asymptotic behavior[J]. Phys Rev Lett, 2005, 94(4):043002. doi: 10.1103/PhysRevLett.94.043002
|
[66] |
REFAELY-ABRAMSON S, SHARIFZADEH S, JAIN M, et al. Gap renormalization of molecular crystals from density-functional theory[J]. Phys Rev B, 2013, 88(8):081204. doi: 10.1103/PhysRevB.88.081204
|
[67] |
YANAI T, TEW D P, HANDY N C. A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP)[J]. Chem Phys Lett, 2004, 393(1/2/3):51-57. http://www.sciencedirect.com/science/article/pii/S0009261404008620
|
[68] |
REFAELY-ABRAMSON S, JAIN M, SHARIFZADEH S, et al. Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory[J]. Phys Rev B, 2015, 92(8):081204(R). doi: 10.1103/PhysRevB.92.081204
|
[69] |
BERNARDO B, CHEYNS D, VERREET B, et al. Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells[J]. Nature Commun, 2014, 5:3245. doi: 10.1038/ncomms4245
|
[70] |
VELDMAN D, IPEK O, MESKERS S C J, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends[J]. J Am Chem Soc, 2008, 130(24):7721-7735. doi: 10.1021/ja8012598
|
[71] |
NAKANO K, TAJIMA K. Organic planar heterojunctions:from models for interfaces in bulk heterojunctions to high-performance solar cells[J]. Adv Mater, 2017, 29(25):1603269. doi: 10.1002/adma.201603269
|
[72] |
WANG T, CHEN X K, ASHOKAN A, et al. Bulk heterojunction solar cells:impact of minor structural modifications to the polymer backbone on the polymer-fullerene mixing and packing and on the fullerene-fullerene connecting network[J]. Advanced Functional Materials, 2018, 28(14):1705868. doi: 10.1002/adfm.201705868
|
[73] |
TUMMALA N R, ZHENG Z, AZIZ S G, et al. Static and dynamic energetic disorders in the C60, PC61BM, C70, and PC71BM Fullerenes[J]. J Phys Chem Lett, 2015, 6(18):3657-3662. doi: 10.1021/acs.jpclett.5b01709
|
[74] |
UNGER T, WEDLER S, KAHLE F J, et al. The impact of driving force and temperature on the electron transfer in donor-acceptor blend systems[J]. J Phys Chem C, 2017, 121(41):22739-22752. doi: 10.1021/acs.jpcc.7b09213
|
[75] |
SHAO Y C, YUAN Y B, HUANG J S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nature Energy, 2016, 1:15001. doi: 10.1038/nenergy.2015.1
|
[76] |
ZHENG Z, TUMMALA N R, WANG T, et al. Charge transfer states at organic-organic interfaces:impact of static and dynamic disorders[J]. Advanced Energy Materials, 2019, 9(14):1803926. doi: 10.1002/aenm.201803926
|
[77] |
MARSH R A, HODGKISS J M, ALBERT-SEIFRIED S, et al. Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy[J]. Nano Lett, 2010, 10(3):923-930. doi: 10.1021/nl9038289
|
[78] |
COROPCEANU V, LAMBERT C, NOLL G, et al. Charge-transfer transitions in triarylamine mixed-valence systems:the effect of temperature[J]. Chem Phys Lett, 2003, 373(1/2):153-160. http://www.sciencedirect.com/science/article/pii/S0009261403005530
|
[79] |
NAN G, ZHANG X, LU G. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics[J]. Phys Chem Chem Phys, 2016, 18(26):17546-17556. doi: 10.1039/C6CP01622G
|
[80] |
DEIBEL C, STROBEL T, DYAKONOV V. Origin of the efficient polaron-pair dissociation in polymer-fullerene blends[J]. Phys Rev Lett, 2009, 103(3):036402. doi: 10.1103/PhysRevLett.103.036402
|
[81] |
COROPCEANU V, CORNIL J, DA S F, et al. Charge transport in organic semiconductors[J]. Chem Rev, 2007, 107(4):926-952. doi: 10.1021/cr050140x
|
[82] |
ENGLMAN R, JORTNER J. The energy gap law for radiationless transitions in large molecules[J]. Mol Phys, 1970, 18(2):145-164. http://www.annualreviews.org/servlet/linkout?suffix=B87&dbid=64&doi=10.1146%2Fannurev.physchem.56.092503.141246&key=1970MolPh..18..145E
|
[83] |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J Appl Phys, 1961, 32(3):510-519. doi: 10.1063/1.1736034
|
[84] |
RAN N A, LOVE J A, TAKACS C J, et al. Harvesting the full potential of photons with organic solar cells[J]. Adv Mater, 2016, 28(7):1482-1488. doi: 10.1002/adma.201504417
|
[85] |
KAWASHIMA K, TAMAI Y, OHKITA H, et al. High-efficiency polymer solar cells with small photon energy loss[J]. Nature Commun, 2015, 6:10085-10093. doi: 10.1038/ncomms10085
|
[86] |
CHEN S, WANG Y, ZHANG L, et al. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer[J]. Adv Mater, 2018, 30:1804215-1804221. doi: 10.1002/adma.201804215
|
[87] |
LIU Y, ZUO L J, SHI X L, et al. Unexpectedly slow yet efficient picosecond to nanosecond photoinduced hole-transfer occurs in a polymer/nonfullerene acceptor organic photovoltaic blend[J]. Acs Energy Lett, 2018, 3(10):2396-2403. doi: 10.1021/acsenergylett.8b01416
|
[88] |
LI S, ZHAN L, SUN C, et al. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets[J]. J Am Chem Soc, 2019, 141(7):3073-3082. doi: 10.1021/jacs.8b12126
|
[89] |
MILLER O D, YABLONOVITCH E, KURTZ S R. Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit[J]. IEEE J Photovolt, 2012, 2(3):303-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89942ca63370e559fc4406a88fe41cec
|
[90] |
DIMITROV S D, DURRANT J R. Materials design considerations for charge generation in organic solar cells[J]. Chem Mater, 2014, 26(1):616-630. doi: 10.1021/cm402403z
|
[91] |
SHIN E J, PARK J H, LEE M Y, et al. Temperature-dependent photoluminescence study of C-60 and C-70[J]. Chem Phys Lett, 1993, 209(5/6):427-433.
|
[1] | YANG Chunlan, ZHANG Xin, WU Shuicai, REN Jiechuan, SHI Yue. Dynamic Functional Connectivity of fMRI and Its Application in Epilepsy[J]. Journal of Beijing University of Technology, 2019, 45(6): 610-616. DOI: 10.11936/bjutxb2018010003 |
[2] | LU Dechun, MU Song, ZHOU Xin, WANG Guosheng, DU Xiuli. Dynamic Resistance of Concrete Materials and Inertial Effects[J]. Journal of Beijing University of Technology, 2019, 45(4): 345-352. DOI: 10.11936/bjutxb2018020023 |
[3] | ZHANG Yuqiang, HE Jingsha, XU Jing, ZHAO Bin, CAI Fangbo. Dynamic Optimal Planning of Path of Mobile Nodes[J]. Journal of Beijing University of Technology, 2016, 42(6): 851-855. DOI: 10.11936/bjutxb2015070087 |
[4] | GUAN Jia-liang, ZHU Lei, SUN Lu-qing, MA Xin-qiang. Static and Dynamic Characteristics of Large Diameter Fresnel Lens Mold[J]. Journal of Beijing University of Technology, 2015, 41(11): 1675-1680. DOI: 10.11936/bjutxb2015050111 |
[5] | YANG Qing-sheng, YANG Hui. A Molecular Structural Model for Static and Dynamical Buckling of Single-walled Carbon Nanotubes[J]. Journal of Beijing University of Technology, 2010, 36(10): 1312-1316. DOI: 10.3969/j.issn.0254-0037.2010.10.003 |
[6] | XU Ping-ping, SONG Jian-guo, WANG Yan-feng, LIU Hong, SHEN Guang-di. Dynamic Testing Platform of Electric Dynamometer[J]. Journal of Beijing University of Technology, 2007, 33(6): 582-586. DOI: 10.3969/j.issn.0254-0037.2007.06.005 |
[7] | ZHANG Li-ming, RAN Yu-jing, LÜ An, LI Bao-quan. The Design and Application of Dynamic Menu Based on VB[J]. Journal of Beijing University of Technology, 2005, 31(5): 452-455. DOI: 10.3969/j.issn.0254-0037.2005.05.002 |
[8] | Gao Wenxue, Liu Yuntong. Numerical Simulations on Dynamic Damage in Brittle Rocks[J]. Journal of Beijing University of Technology, 2000, 26(2): 5-10. DOI: 10.3969/j.issn.0254-0037.2000.02.002 |
[9] | Li Junqin, Yang Jiahua, Chen Weifu. Static and Dynamic Behavour Analysis of XA5040A Knee-and-Column Milling Machine With Finite Element[J]. Journal of Beijing University of Technology, 1990, 16(1): 54-61. |
[10] | Hu Zheng-heng, Li Yong-an, Ban Shu-ying, Zhu Huai-zhang. An Investigation into the Dynamic Real-Time Sensing of Weld Width[J]. Journal of Beijing University of Technology, 1983, 9(4): 43-48. |
1. |
付永军,赵晋宇,范红刚,葛亮,胡长松,王巍,郭旭,曲鹏勃. 太阳能电池用聚合物给体共轭新材料制备及性能研究. 粘接. 2024(11): 45-48 .
![]() | |
2. |
袁素真,赵文豪,卿显荣. 量子图像乘法运算及其仿真实现. 北京工业大学学报. 2023(06): 667-674 .
![]() |