Citation: | PENG Lingyun, CHEN Liguang, SUN Tianwei, KANG Yingjie. Analysis and Application of Damping Effect of Linear Hysteretic Damping With Negative Stiffness[J]. Journal of Beijing University of Technology, 2020, 46(12): 1355-1364. DOI: 10.11936/bjutxb2019120012 |
To solve the problem that energy dissipation and damping technology needs to arrange energy dissipation devices in multiple floors to achieve the ideal damping effect, a linear hysteretic damping model with negative stiffness characteristic was proposed in this paper, which was arranged at the bottom of the structure. By the contribution of the negative stiffness, the mechanical isolation layer was formed to reduce the seismic action, and the displacement of the equivalent isolation layer was controlled by the energy consumption mechanism. Based on the stationary random response analysis of single degree of freedom (SDOF) system and seismic time history response analysis, it is verified that the negative stiffness linear hysteretic damping can reduce the acceleration and displacement response of the structure. The shock absorption analysis of a real thermal power plant structure shows that the negative stiffness linear hysteretic damping can extend the period of the structure, improve the damping ratio of the structure, and play a significant role of control effect on the seismic response of the structure.
[1] |
IEMURA H, PRADONO M H. Application of pseudo-negative stiffness control to the benchmark cable-stayed bridge[J]. Journal of Structural Control, 2003, 10(3/4):187-203. https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112087080.html
|
[2] |
IEMURA H, PRADONO M H. Advances in the development of pseudo-negative-stiffness dampers for seismic response control[J]. Journal of Structural Control and Health Monitoring, 2009, 16(7/8):784-799.
|
[3] |
IEMURA H, IGARASHI A, PRADONO M H, et al. Negative stiffness friction damping for seismically isolated structures[J]. Journal of Structural Control and Health Monitoring, 2006, 13(2/3):775-791. https://www.researchgate.net/publication/32141277_Negative_Stiffness_Friction_Damping_for_Seismically_Isolated_Structures
|
[4] |
IEMURA H, PRADONO M H. Passive and semi-active seismic response control of a cable-stayed bridge[J]. Journal of Structural Control, 2002, 9(3):189-204.
|
[5] |
IEMURA H, PRADONO M H. Simple algorithm for semi-active seismic response control of cable-stayed bridges[J]. Journal of Earthquake Engineering and Structural Dynamics, 2005, 34(4/5):409-423.
|
[6] |
史鹏飞.磁流变阻尼器的负刚度控制及实时混合试验方法[D].哈尔滨: 哈尔滨工业大学, 2011: 17-60. http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000347.htm
SHI P F. Negative stiffness control and real-time hybrid test method of MR damper[D]. Harbin: Harbin University of Technology, 2011: 17-60. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000347.htm
|
[7] |
史鹏飞, 吴斌.拟负刚度与粘滞阻尼混合减震结构的动力特性与减震效果分析[J].振动与冲击, 2009, 28(3):163-167. http://d.wanfangdata.com.cn/periodical/zdycj200911039
SHI P F, WU B. Analysis of dynamic characteristics and damping effect of hybrid structure with pseudo negative stiffness and viscous damping[J]. Vibration and Impact, 2009, 28(3):163-167. (in Chinese) http://d.wanfangdata.com.cn/periodical/zdycj200911039
|
[8] |
史鹏飞, 吴斌.拟负刚度阻尼减震结构的动力特性与减震效果分析[J].防灾减灾工程学报, 2009, 29(3):300-305. http://www.cnki.com.cn/Article/CJFDTotal-DZXK200903010.htm
SHI P F, WU B. Analysis of dynamic characteristics and damping effect of quasi negative stiffness damping structure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(3):300-305. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZXK200903010.htm
|
[9] |
付杰, 熊世树, 纪晗, 等.多自由度结构的拟负刚度阻尼器减振效果分析[J].华中科技大学学报(自然科学版), 2014, 42(2):46-50. http://www.cnki.com.cn/Article/CJFDTotal-HZLG201402010.htm
FU J, XIONG S S, JI H, et al. Analyzing vibration reduction effect of multi-degree of freedom structures using pseudo-negative-stiffness dampers[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(2):46-50. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HZLG201402010.htm
|
[10] |
龚微, 熊世树.拟负刚度隔震Benchmark模型减震效果及适应性[J].华中科技大学学报(自然科学版), 2015, 43(8):7-11. http://qikan.cqvip.com/Qikan/Article/Detail?id=665690851
GONG W, XIONG S S. Effectiveness and adaptability analysis of smart base isolated benchmark model with pseudo-negative stiffness control[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2015, 43(8):7-11. (in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=665690851
|
[11] |
龚微, 熊世树, 谭平, 等.拟负刚度磁流变智能隔震系统振动台试验研究[J].建筑结构学报, 2019(12):1-10. http://www.cnki.com.cn/Article/CJFDTotal-JZJB201912002.htm
GONG W, XIONG S S, TAN P, et al. Shaking table test research on pseudo negative stiffness MR intelligent isolation system[J]. Journal of Building Structures, 2019(12):1-10.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JZJB201912002.htm
|
[12] |
纪晗, 熊世树, 袁涌.基于负刚度原理的结构隔震效果分析[J].华中科技大学学报(自然科学版), 2010, 38(2):76-79. http://www.cnki.com.cn/Article/CJFDTotal-HZLG201002023.htm
JI H, XIONG S S, YUAN Y. Analyzing vibration isolation effect of structures using negative stiffness principle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(2):76-79. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HZLG201002023.htm
|
[13] |
纪晗, 熊世树, 袁涌.基于负刚度原理的结构减震效果理论分析[J].振动与冲击, 2010, 29(3):91-94. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201003021.htm
JI H, XIONG S S, YUAN Y. Influence analysis of the structural seismic reduction effect based on negative stiffness principle[J]. Journal of Vibration and Shock, 2010, 29(3):91-94. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201003021.htm
|
[14] |
杨巧荣, 李传德, 许浩, 等.核电厂负刚度阻尼隔震结构的地震响应研究[J].原子能科学技术, 2019, 53(4):718-727.
YANG Q R, LI C D, XU H, et al. Study on seismic response of negative stiffness damping isolation structure of nuclear power plant[J]. Atomic Energy Science and Technology, 2019, 53(4):718-727. (in Chinese)
|
[15] |
杨巧荣, 任天娇, 何文福, 等.组合隔震系统基于负刚度装置的隔震效果研究[J].结构工程师, 2018, 34(4):73-79. http://www.cnki.com.cn/Article/CJFDTotal-JGGC201804011.htm
YANG Q R, REN T J, HE W F, et al. Study on isolation effect of composite isolation system based on negative stiffness device[J]. Structural Engineer, 2018, 34(4):73-79. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JGGC201804011.htm
|
[16] |
彭珺洁, 彭凌云, 康迎杰, 等.变截面U型钢阻尼器的滞回性能及其应用研究[J].工业建筑, 2018, 48(10):115-120, 147. http://www.cnki.com.cn/Article/CJFDTotal-GYJZ201810019.htm
PENG J J, PENG L Y, KANG Y J, et al. Research on hysteretic performance and application of variable section U-steel damper[J]. Industrial Architecture, 2018, 48(10):115-120, 147. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYJZ201810019.htm
|
[17] |
陈占江, 常健, 孙睿.具有线性滞回阻尼特征的双压簧变摩擦阻尼器性能试验和有限元分析[J].工业建筑, 2018, 48(6):1-6. http://www.cnki.com.cn/Article/CJFDTotal-GYJZ201806001.htm
CHEN Z J, CHANG J, SUN R. Performance test and finite element analysis of variable friction damper with linear hysteretic damping characteristics[J]. Industrial Architecture, 2018, 48(6):1-6. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYJZ201806001.htm
|
[18] |
彭凌云.向心式摩擦阻尼器的理论分析及应用研究[D].北京: 北京工业大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10005-2004082430.htm
PENG L Y. Theoretical analysis and application of centripetal friction damper[D]. Beijing: Beijing University of Technology, 2004. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10005-2004082430.htm
|
[19] |
彭凌云.地震动随机模型及结构响应控制[D].北京: 北京工业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10005-2008088321.htm
PENG L Y. Random model of ground motion and structural response control[D]. Beijing: Beijing: University of Technology, 2008. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10005-2008088321.htm
|
[20] |
王冲.负刚度装置在连续梁桥上的减隔震分析研究[D].西安: 长安大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10710-1016749992.htm
WANG C. Analysis and research on seismic isolation of negative stiffness device on continuous girder bridge[D]. Xi'an: Chang'an University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10710-1016749992.htm
|
[1] | WEI Haijiao, LU Yuanwei, WU Yuting, LI Weidong, ZHAO Dongming. Exergy Analysis of Flexible Operation of Coal-fired Power Plant[J]. Journal of Beijing University of Technology, 2022, 48(12): 1307-1318. DOI: 10.11936/bjutxb2021050013 |
[2] | GAO Xiangyu, LI Zhenyu, SHI Anqi, WANG Zuojie, LIU Kaiyan, LI Yanglong, ZHANG Guowei. Dynamic Test and Finite Element Analysis of Steel Brace-Frame Bent Structure[J]. Journal of Beijing University of Technology, 2022, 48(12): 1238-1247. DOI: 10.11936/bjutxb2022030004 |
[3] | GAO Xiangyu, SHI Anqi, LI Yanglong, ZHANG Guowei, WANG Zuojie, LI Zhenyu, MENG Ya. Design and Test of Dynamic Model of Steel Braced Frame-bent Structure in Thermal Power Plant[J]. Journal of Beijing University of Technology, 2022, 48(7): 739-749. DOI: 10.11936/bjutxb2021040017 |
[4] | QIN Miaojun, ZHAO Yangang, LU Zhaohui. Reliability Analysis of Nuclear Power Plants Under Random Earthquake Based on Extreme Value Theory[J]. Journal of Beijing University of Technology, 2020, 46(8): 892-899. DOI: 10.11936/bjutxb2019070017 |
[5] | HUANG Jin, GAO Xiangyu, ZHOU Jianjun, WANG Yongqiang, ZENG Zhenjie, WANG Fumin. Seismic Experiment and Design Suggestion for BRB-Concrete Frame Bent Structure[J]. Journal of Beijing University of Technology, 2020, 46(8): 879-891. DOI: 10.11936/bjutxb2019030015 |
[6] | YAN Weiming, DAI Yingnan, CHEN Shicai, SUN Yunlun. Shaking Table Test of a Base-isolated Nuclear Power Plant[J]. Journal of Beijing University of Technology, 2018, 44(12): 1513-1520. DOI: 10.11936/bjutxb2017060048 |
[7] | XU Jimin, GAO Xiangyu, GUO Yanan, WANG Yongqiang, ZHANG Lingwei. Experimental Study of Steel Frame-bent Structure With Energy Dissipation Braces of Thermal Power Plant Under Cyclic Loading[J]. Journal of Beijing University of Technology, 2017, 43(11): 1713-1721. DOI: 10.11936/bjutxb2017030013 |
[8] | LI Ji-dong, TAO Lian-jin, AN Jun-hai, WU Bing-lin, HUANG Kai-ping. Seismic Response Analysis of Large Closely-attached Intersecting Combination of Subway Station[J]. Journal of Beijing University of Technology, 2014, 40(3): 361-367,373. DOI: 10.3969/j.issn.0254-0037.2014.03.007 |
[9] | WANG Ning, XUE Suduo, LI Xiongyan. Seismic Response Comparison and Analysis of Two Types of Single-layer Cylindrical Reticulated Shell Models[J]. Journal of Beijing University of Technology, 2013, 39(1): 44-50. DOI: 10.3969/j.issn.0254-0037.2013.01.008 |
[10] | HUANG Qing, CHENG Shui-yuan, CHEN Dong-sheng, ZHAO Xiu-yong, GUO Xiu-rui, WANG Hai-yan. SO2 Air Quality Impact on Beijing and Surrounding Region From Power Plant Emissions in North China[J]. Journal of Beijing University of Technology, 2009, 35(10): 1389-1395. DOI: 10.3969/j.issn.0254-0037.2009.10.016 |