• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
QIN Miaojun, ZHAO Yangang, LU Zhaohui. Reliability Analysis of Nuclear Power Plants Under Random Earthquake Based on Extreme Value Theory[J]. Journal of Beijing University of Technology, 2020, 46(8): 892-899. DOI: 10.11936/bjutxb2019070017
Citation: QIN Miaojun, ZHAO Yangang, LU Zhaohui. Reliability Analysis of Nuclear Power Plants Under Random Earthquake Based on Extreme Value Theory[J]. Journal of Beijing University of Technology, 2020, 46(8): 892-899. DOI: 10.11936/bjutxb2019070017

Reliability Analysis of Nuclear Power Plants Under Random Earthquake Based on Extreme Value Theory

More Information
  • Received Date: July 15, 2019
  • Available Online: August 03, 2022
  • Published Date: August 09, 2020
  • To solve the problem of dynamic reliability of nuclear power plants under random ground motion excitation, a dynamic reliability analysis method was developed, with the extreme value distribution of the maximum response evaluated based on linear moments(L-moment). First, according to the target response spectrum, the corresponding time-history of ground motion samples were generated. Combined with the nuclear power structure finite element model, the time-domain explicit method was used in the random vibration analysis to obtain the node displacement response time-history sample. Then, the maximum displacement response time-history samples were estimated to determine the first three L-moment of the maximum response, and the three-parameter of maximum response distribution was determined according to the L-moment matching. Finally, based on the maximum response distribution, the reliability under different thresholds was estimated. Results show that when the peak value of seismic acceleration is 0.3 g, the containment structure has good reliability with slight damage as the boundary, and still has certain reliability with medium damage. The dynamic reliability analysis of the nuclear power plant shows that compared with the Monte Carlo method, this method greatly reduces the minimum sample size and improves the computational efficiency of the simulated tail while ensuring the calculation accuracy. At the same time, it has wide applicability for solving the problem of dynamic reliability of other structures.

  • [1]
    中华人民共和国建设部.核电厂抗震设计规范: GB 50267-1997[S].北京: 中国计划出版社, 1998.
    [2]
    张家倍, 李明高, 马琳伟.核电厂抗震安全评估[M].上海:上海科学技术出版社, 2013:23-27.
    [3]
    HUANG Y N, WHITTAKER A S, LUCO N. A probabilistic seismic risk assessment procedure for nuclear power plants:(Ⅰ) methodology[J]. Nuclear Engineering & Design, 2011, 241(9):3996-4003. https://pubs.er.usgs.gov/publication/70034627
    [4]
    王晓磊, 吕大刚.核电站地震易损性分析方法的研究进展[J].地震工程与工程振动, 2014, 34(增刊1):409-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8707293

    WANG X L, LÜ D G. Methodologies for seismic fragility analysis of nuclear power plants:state-of-the-art[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(Suppl 1):409-415. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8707293
    [5]
    KENNEDY R P, RAVINDRA M K. Seismic fragilities for nuclear power plant risk studies[J]. Nuclear Engineering & Design, 1984, 79(1):47-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=+dNYt38mt25/ck2t/t8fTsTAsOAcaHGV3MPD+8qWhiE=
    [6]
    SMITH P D, DONG R G, BERNREUTER D L, et al. Seismic safety margins research program phase I, final report-overview[R]. San Francisco, USA: Lawrence Livermore Laboratory, 2015.
    [7]
    HWANG H, REICH M, SHINOZUKA M. Structural reliability analysis and seismic risk assessment[R]. New York: Brookhaven National Laboratory, 1984
    [8]
    何军.非平稳随机激励下系统首次穿越概率的近似解法[J].应用数学和力学, 2009, 30(2):245-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yysxhlx200902013

    HE J. Approximation for first passage probability of systems under nonstationary random excitation[J]. Applied Mathematics and Mechanics, 2009, 30(2):245-252. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yysxhlx200902013
    [9]
    HE J. Approximate method for estimating extreme value responses of nonlinear stochastic dynamic system[J]. Journal of Engineering Mechanics, 2015, 141(7):136-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d0683b89119a401d8268b8c5ae1f569
    [10]
    HE J, JING H G. Estimate of small first passage probabilities of nonlinear random vibration systems by using tail approximation of extreme distributions[J]. Structural Safety, 2016, 60:28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9f9e15ec3bf0dc298dfdb8775f2d51b
    [11]
    NAESS A, GAIDAI O. Monte Carlo methods for estimating the extreme response of dynamical systems[J]. Journal of Engineering Mechanics, 2008, 134(8):628-636. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b92ac1395b46c61115880be4172c9e00
    [12]
    BALESDENT M, MORIO J, MARZAT J. Kriging-based adaptive importance sampling algorithms for rare event estimation[J]. Structural Safety, 2013, 44:1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a28605346d3594aea13b5a035f66032d
    [13]
    GRIGORIU M, SAMORODNITSKY G. Reliability of dynamic systems in random environment by extreme value theory[J]. Probabilistic Engineering Mechanics, 2014, 38:54-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5353f599ab2c9953ed45932a08e2efb
    [14]
    苏成, 徐瑞.非平稳随机激励下结构体系动力可靠度时域解法[J].力学学报, 2010, 42(3):512-520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201003021

    SU C, XU R. Time-domain method for dynamic reliability of structural systems subjected to non-stationary random excitations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):512-520. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201003021
    [15]
    苏成, 黄志坚, 刘小璐.高层建筑地震作用计算的时域显式随机模拟法[J].建筑结构学报, 2015, 36(1):13-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201501002

    SU C, HUANG Z J, LIU X L. Time-domain explicit random simulation method for seismic analysis of tall buildings[J]. Journal of Building Structures, 2015, 36(1):13-22. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201501002
    [16]
    BOLOTIN V V. Statistical theory of aseismic structures[J]. Izv Akad Nauk SSSR Otd Tehn Nauk Meh Mašinostr, 1959, 4:123-129.
    [17]
    何光曦.核电工程结构抗震分析的随机振动方法研究[D].广州: 华南理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10561-1017733305.htm

    HE G X. Research on random vibration method for seismic analysis of nuclear power engineering structures[D]. Guangzhou: South China University of Technology, 2017. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10561-1017733305.htm
    [18]
    胡聿贤.地震工程学[M].北京:地震出版社, 1981:86-87.
    [19]
    XU J, DING Z, WANG J. Extreme value distribution and small failure probabilities estimation of structures subjected to non-stationary stochastic seismic excitations[J]. Structural Safety, 2018, 70:93-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e431d50a6f44f993e836afd45ee48d1
    [20]
    苏成, 徐瑞.非平稳地震作用下随机结构动力可靠度计算[J].振动工程学报, 2011, 24(2):118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdgcxb201102002

    SU C, XU R. Dynamic reliability analysis of stochastic structures subjected to non-stationary seismic excitations[J]. Journal of Vibration Engineering, 2011, 24(2):118-124. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdgcxb201102002
    [21]
    岳碧波.非线性/非高斯地震反演若干问题及应用研究[D].成都: 电子科技大学, 2014. http://d.wanfangdata.com.cn/thesis/D496894

    YUE B B. Study on nonlinear/non-Gaussian seismic inversion problems and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese) http://d.wanfangdata.com.cn/thesis/D496894
    [22]
    李桂青, 李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社, 2001:181-183.
    [23]
    HOSKING J R M, WALLIS J R. Regional frequency analysis:an approach based on L-moment[M]. London:Cambridge University Press, 1997:34-40.
    [24]
    HOSKING J R M. L-moments:analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statistical Society, 1990, 52(1):105-124. doi: 10.1111/j.2517-6161.1990.tb01775.x
    [25]
    渠亚卿.强震下核岛厂房地震反应及易损性分析[D].大连: 大连理工大学, 2017. http://d.wanfangdata.com.cn/thesis/D01236292

    QU Y Q. Seismic response subjected to strong earthquakes and fragility analysis of nuclear island[D]. Dalian: Dalian University of Technology, 2017. (in Chinese) http://d.wanfangdata.com.cn/thesis/D01236292
    [26]
    黄孝帝, 顾颖, 何军.结构极值响应估计方法的有效性研究[J].郑州大学学报(工学版), 2019, 40(1):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzgydxxb201901010

    HUANG X D, GU Y, HE J. Efficiency analysis of structural extreme response estimation methods[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(1):55-61. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzgydxxb201901010
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (187) PDF downloads (48) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return