• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CHEN Zhigang, RUAN Xiaogang, LI Yuan. Dynamics Modeling of a Cubical Robot Balancing on Its Corner[J]. Journal of Beijing University of Technology, 2019, 45(7): 638-645. DOI: 10.11936/bjutxb2018030003
Citation: CHEN Zhigang, RUAN Xiaogang, LI Yuan. Dynamics Modeling of a Cubical Robot Balancing on Its Corner[J]. Journal of Beijing University of Technology, 2019, 45(7): 638-645. DOI: 10.11936/bjutxb2018030003

Dynamics Modeling of a Cubical Robot Balancing on Its Corner

More Information
  • Received Date: February 28, 2018
  • Available Online: August 03, 2022
  • Published Date: July 09, 2019
  • Aiming at the balancing control problem of a cubical robot, a system balancing on its corner was modeled by taking the physical prototype as research object, and least system variables were defined for expressing system movement attributes. The energy function and generalized forces of the system were calculated, and the dynamic model of the cubical robot balancing on its corner was derived based on Lagrange method. The correctness of the model was analyzed in theory by numerical simulation, and the model precision was verified with basically indetical response results about zero-input experiment in comparision betweeen the model and virtual prototype. A balancing controller designed based on the dynamic model was applied in balancing control of the virtual prototype. The experiment results show that the cubical robot can balance effectively by the controller, then the effectiveness of the model is verified further. The dynamic model provides an important foundation for the further research on balancing control of the cubical robot.

  • [1]
    王家军, 刘栋良, 王宝军. X-Z倒立摆的一种饱和非线性稳定控制方法的研究[J].自动化学报, 2013, 39(1):92-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201301011

    WANG J J, LIU D L, WANG B J. Research on one type of saturated nonlinear stabilization control method of X-Z inverted pendulum[J]. Acta Automatica Sinica, 2013, 39(1):92-96. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201301011
    [2]
    张永立.空间多级倒立摆非线性控制方法研究[D].大连: 大连理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10141-1012271766.htm

    ZHANG Y L. Research on nonlinear control technique for spherical multi-rod inverted pendulum system[D]. Dalian: Dalian University of Technology, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1012271766.htm
    [3]
    BRISILLA R M, SANKARANARAYANAN V. Nonlinear control of mobile inverted pendulum[J]. Robotics & Autonomous Systems, 2015, 70:145-155.
    [4]
    阮晓钢, 王旭, 陈志刚.独轮机器人的建模与自抗扰控制算法[J].控制与决策, 2015, 30(12):2253-2258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201512021

    RUAN X G, WANG X, CHEN Z G. Modeling and active disturbance rejection algorithm of single wheel robot[J]. Control and Decision, 2015, 30(12):2253-2258. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201512021
    [5]
    PAULOS J, ECKENSTEIN N, TOSUN T, et al. Automated self-assembly of large maritime structures by a team of robotic boats[J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(3):958-968.
    [6]
    The Ohio State University. Syllabus[EB/OL].[2018-03-01]. http://www2.ece.ohio-state.edu/~passino/ee758.html.
    [7]
    田莉.立方体系统的模糊控制算法研究[D].南京: 南京理工大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10288-2006183336.htm

    TIAN L. Research on fuzzy control algorithm of cube system[D]. Nanjing: Nanjing University of Science and Technology, 2006. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10288-2006183336.htm
    [8]
    邱振彬.基于观测器的立方体系统控制研究[D].南京: 南京理工大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10288-2009196650.htm

    QIU Z B. Research on control of cube system based on observer[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10288-2009196650.htm
    [9]
    TRIMPE S, D'ANDREA R. The balancing cube:a dynamic sculpture as test bed for distributed estimation and control[J]. IEEE Control Systems, 2012, 32(6):48-75.
    [10]
    GAJAMOHAN M, MERZ M, THOMMEN I, et al. The cubli: a cube that can jump up and balance[C]//IEEE/RS International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 3722-3727.
    [11]
    MUEHLEBACH M, D'ANDREA R. Nonlinear analysis and control of a reaction-wheel-based 3-D inverted pendulum[J]. IEEE Transactions on Control System Technology, 2017, 25(1):235-246.
    [12]
    KIM S, KWON S J. Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot[J]. International Journal of Control, Automation and Systems, 2015, 13(4):926-933.
    [13]
    MUEHLEBACH M, GAJAMOHAN M, D'ANDREA R. Nonlinear analysis and control of a reaction wheel-based 3D inverted pendulum[C]//52nd IEEE Conference on Decision and Control. Piscataway: IEEE, 2013: 1283-1288.
    [14]
    GAJAMOHAN M, MUEHLEBACH M, WIDMER T, et al. The cubli: a reaction wheel based 3D inverted pendulum[C]//European Control Conference. Piscataway: IEEE, 2013: 268-274.
    [15]
    陈志刚, 阮晓钢, 李元.自平衡立方体机器人动力学建模[J].北京工业大学学报, 2018, 44(3):95-100. http://navi.cnki.net/knavi/Common/RedirectPage?sfield=FN&dbCode=CJFD&fileName=BJGD201803009&tableName=CJFDLAST2018&url=11.2286.T.20171220.1615.004

    CHEN Z G, RUAN X G, LI Y. Dynamic modeling of a self-balancing cubical robot[J]. Journal of Beijing University of Technology, 2018, 44(3):95-100. (in Chinese) http://navi.cnki.net/knavi/Common/RedirectPage?sfield=FN&dbCode=CJFD&fileName=BJGD201803009&tableName=CJFDLAST2018&url=11.2286.T.20171220.1615.004
    [16]
    叶敏, 肖龙翔.分析力学[M].天津:天津大学出版社, 2001:140-158.
    [17]
    OLIVARES M, ALBERTOS P. Linear control of the flywheel inverted pendulum[J]. Isa Transactions, 2014, 53(5):1396-1403. doi: 10.1016/j.isatra.2013.12.030
    [18]
    BLOCK D J, ASTROM K J, SPONG M W. The reaction wheel pendulum[M]. Williston:Morgan & Claypool Publishers, 2007:1-105.
    [19]
    杜孝平, 赵凯琪.基于PID的移动机器人运动控制系统设计与实现[J].通信学报, 2016, 37(增刊1):43-49. http://cdmd.cnki.com.cn/Article/CDMD-10217-2006133146.htm

    DU X P, ZHAO K Q. Design and implementation of the motion control system of the mobile robot based on PID[J]. Journal of Communications, 2016, 37(Suppl 1):43-49. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10217-2006133146.htm
    [20]
    王启源, 阮晓钢.独轮自平衡机器人双闭环非线性PID控制[J].控制与决策, 2012, 27(4):593-597. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201204021

    WANG Q Y, RUAN X G. Dual loop nonlinear PID control of single-wheeled robot[J]. Control and Decision, 2012, 27(4):593-597. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzyjc201204021
    [21]
    YUAN X F, XIANG Y Z, WANG Y, et al. Neural networks based PID control of bidirectional inductive power transfer system[J]. Neural Processing Letters, 2016, 43(3):837-847. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37bde117d137331ce2c53861912b446c
  • Related Articles

    [1]XU Yan, LI Tianqi, YANG Yang, WANG Ruimei, MENG Fei, LIU Jie. Simulation of Urban Rail Transit Travel Reservation[J]. Journal of Beijing University of Technology, 2024, 50(8): 995-1006. DOI: 10.11936/bjutxb2022110039
    [2]ZHU Xingyi, WU Yanan, BAI Shunjie, CHEN Long. Aircraft Skid Resistance Failure Risk Assessment Based on Virtual Prototype in Wet Sliding State[J]. Journal of Beijing University of Technology, 2022, 48(6): 644-654. DOI: 10.11936/bjutxb2022010008
    [3]CAI Ligang, LIU Haidong, CHENG Qiang, LIU Zhifeng, YANG Congbin, QI Yin. Analysis and Optimization of Die Forging Wear Based on Orthogonal Test Method[J]. Journal of Beijing University of Technology, 2020, 46(1): 1-9. DOI: 10.11936/bjutxb2018070003
    [4]CHEN Zhigang, RUAN Xiaogang, LI Yuan. Dynamic Modeling of a Self-balancing Cubical Robot[J]. Journal of Beijing University of Technology, 2018, 44(3): 376-381. DOI: 10.11936/bjutxb2017060055
    [5]YU Xian-li, LIU Shun-an. Simulation and Analysis of the Dissipative Control System of an Active Suspension[J]. Journal of Beijing University of Technology, 2012, 38(1): 39-44. DOI: 10.3969/j.issn.0254-0037.2012.01.008
    [6]GUO Tie-neng, XI Fang-jian, CAI Li-gang, LIU Zhi-feng, CHENG Qiang. Load Curve Analysis and Experimental Study of Long Span and Heavy Load Crossbeam[J]. Journal of Beijing University of Technology, 2011, 37(8): 1129-1135. DOI: 10.3969/j.issn.0254-0037.2011.08.002
    [7]KANG Yan, YAO Wen-xi, SHI Zhao-yao. Virtual Collaborative Design and Simulation System of Roller Coaster Based on C/S Web Model[J]. Journal of Beijing University of Technology, 2009, 35(9): 1158-1162. DOI: 10.3969/j.issn.0254-0037.2009.09.002
    [8]TANG Xiao-yan, LIU Shao-jun, YUN Zhong. Design of an Active Heave Compensation System for Deep-ocean Mining Based on the Virtual Prototype Technology[J]. Journal of Beijing University of Technology, 2008, 34(5): 454-458. DOI: 10.3969/j.issn.0254-0037.2008.05.002
    [9]WANG Li, LIU Xiao-ming, REN Fu-tian, QUAN Yong-shen. Traffic Impact Analysis by Using Traffic Simulation[J]. Journal of Beijing University of Technology, 2004, 30(4): 454-456. DOI: 10.3969/j.issn.0254-0037.2004.04.014
    [10]CHEN Xin-rong, YU Yue-qing, JIANG Chun-fu, LIU Ying-chun. Robot Simulation Based on Virtual Prototype[J]. Journal of Beijing University of Technology, 2004, 30(1): 38-40. DOI: 10.3969/j.issn.0254-0037.2004.01.009
  • Cited by

    Periodical cited type(5)

    1. 杨继荣,黄卫华,付亮亮,胡阳城,陈师聪. 立方体机器人自适应滑模容错控制系统设计. 组合机床与自动化加工技术. 2023(04): 100-103+107 .
    2. 严睿,周惠兴,张玉品,于大海,杨震卿. 基于模糊PID控制的空间吊装物姿态控制. 科学技术与工程. 2023(11): 4702-4708 .
    3. 陈昊,黄卫华,胡阳城,梅宇恒,曾聪. 基于逆系统的立方体机器人H_∞鲁棒控制. 组合机床与自动化加工技术. 2023(06): 72-76 .
    4. 熊长智,周慧,贾杰. 基于深度图像的轮足机器人坐姿平衡控制仿真. 计算机仿真. 2023(10): 435-439 .
    5. 李磊,章政,黄卫华,郭庆瑞,胡阳城. 基于区间Ⅱ型T-S模糊模型的立方体机器人自平衡控制. 高技术通讯. 2022(08): 866-874 .

    Other cited types(9)

Catalog

    Article views (236) PDF downloads (70) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return