Citation: | ZHU Xingyi, WU Yanan, BAI Shunjie, CHEN Long. Aircraft Skid Resistance Failure Risk Assessment Based on Virtual Prototype in Wet Sliding State[J]. Journal of Beijing University of Technology, 2022, 48(6): 644-654. DOI: 10.11936/bjutxb2022010008 |
To solve the problem of aircraft landing safety in the wet condition of the runway, the authors used the tire-water film-road surface finite element models as the basis and combined the skid resistance performance of the road surface with the risk assessment of skid resistance failure by means of a virtual prototype to quantitatively assess the risk of aircraft running off the runway. Furthermore, the equivalent adhesion coefficient was proposed, and the three-dimensional surface of "adhesion coefficient-slip rate" under different speeds and different water film states was drawn. Finally, taking the two runways as examples (length 3 600 m and 3 400 m), the risk level of aircraft rushing out of the runway under different water film states was calculated. When the runway was dry, the risk level of the aircraft to rush out of the runway was E, which means there is basically no possibility to rush out of the runway. When the thickness of the water film was 3 mm, the possibility of the aircraft rushing out of the runway rises sharply. Referring to the Federal Aviation Administration (FAA) standard, the risk level at this time was B. However, when calculating the braking distance of the aircraft, the thrust of the aircraft was not considered, therefore the calculation results are generally safe.
[1] |
卢春房, 张航, 陈明玉. 新时代背景下的交通运输高质量发展[J]. 中国公路学报, 2021, 34(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106001.htm
LU C F, ZHANG H, CHEN M Y. Realization of high-quality development of transportation in the new era[J]. China Journal of Highway and Transport, 2021, 34(6): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106001.htm
|
[2] |
International Civil Aviation Organization. Safety report_final[R]. Montréal, Canada: International Civil Aviation Organization, 2014.
|
[3] |
谭忆秋, 张驰, 陈凤晨, 等. 基于热管技术的机场道面融雪性能试验研究[J]. 中国公路学报, 2019, 32(4): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904012.htm
TAN Y Q, ZHANG C, CHEN F C, et al. Snow melting performance experimental study of airport pavement with heat pipe technology[J]. China Journal of Highway and Transport, 2019, 32(4): 137-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904012.htm
|
[4] |
PASINDU H R, FWA T F, ONG G P. Analysis of skid resistance variation on a runway during an aircraft landing operation[C]//Proceedings of the 7th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control. Auckland: ARRB, 2012: 28-30.
|
[5] |
VAN ES G W H. Running out of runway: analysis of 35 years of landing overrun accidents[J/OL]. [2022-02-22]. https://reports.nlr.nl/bitstream/handle/10921/549/TP-2005-498.pdf?sequence=1.
|
[6] |
FOUNDATION F S. FSF ALAR briefing note 8.3-landing distances[J/OL]. [2022-02-22]. https://flightsafety.org/files/alar_bn8-3-distances.pdf.
|
[7] |
THOMAS D. Can you STOP[J/OL]. [2022-02-22]. http://flightsafety.org/asw/nov11/asw_nov11_p12-15.pdf.
|
[8] |
于华洋, 马涛, 王大为, 等. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001
YU H Y, MA T, WANG D W, et al. Review on China's pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001
|
[9] |
ONG G P, FWA T. Wet-pavement hydroplaning risk and skid resistance: modeling[J]. Journal of Transportation Engineering, 2007, 133(10): 590-598. doi: 10.1061/(ASCE)0733-947X(2007)133:10(590)
|
[10] |
ONG G P, FWA T. Modeling and analysis of truck hydroplaning on highways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2068(1): 99-108. doi: 10.3141/2068-11
|
[11] |
FWA T, ONG G P. Transverse pavement grooving against hydroplaning Ⅱ: design[J]. Journal of transportation engineering, 2006, 132(6): 449-457. doi: 10.1061/(ASCE)0733-947X(2006)132:6(449)
|
[12] |
ONG G P, FWA T. Modeling skid resistance of commercial trucks on highways[J]. Journal of Transportation Engineering, 2009, 136(6): 510-517. doi: 10.1061/%28ASCE%29TE.1943-5436.0000116
|
[13] |
ONG G P, FWA T. Mechanistic interpretation of braking distance specifications and pavement friction requirements[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2155(1): 145-157. doi: 10.3141/2155-16
|
[14] |
ONG G P, FWA T. Transverse pavement grooving against hydroplaning Ⅰ: simulation model[J]. Journal of transportation engineering, 2006, 132(6): 441-448. doi: 10.1061/(ASCE)0733-947X(2006)132:6(441)
|
[15] |
黄晓明, 曹青青, 刘修宇, 等. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报(工学版), 2019, 49(3): 757-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201903011.htm
HUANG X M, CAO Q Q, LIU X Y, et al. Simulation of vehicle braking performance on rainy days based on pavement surface fractal friction theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 757-765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201903011.htm
|
[16] |
黄晓明, 刘修宇, 曹青青, 等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报(自然科学版), 2018, 45(9): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htm
HUANG X M, LIU X Y, CAO Q Q, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htm
|
[17] |
杨成凤, 郭兆电, 邓文剑. 机轮溅水特性及对进气道吸水的影响[J]. 航空学报, 2018, 39(2): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802005.htm
YANG C F, GUO Z D, DENG W J. Characteristic of airplane wheel water spray and its effect on water ingestion of engine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 51-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802005.htm
|
[18] |
蔡靖, 王永繁, 李岳. 基于轮组效应湿滑跑道飞机轮胎-水膜相互作用研究[J]. 科学技术与工程, 2015 (11): 116-124. doi: 10.3969/j.issn.1671-1815.2015.11.020
CAI J, WANG Y F, LI Y. Study on tire water film interaction of aircraft on wet runway based on wheel group effect[J]. Science Technology and Engineering, 2015 (11): 116-124. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.11.020
|
[19] |
朱兴一, 庞亚凤, 杨健, 等. 湿滑条件下基于真实纹理道面的机轮着陆滑水行为解析[J]. 中国公路学报, 2020, 33(10): 159-170. doi: 10.3969/j.issn.1001-7372.2020.10.010
ZHU X Y, PANG Y F, YANG J, et al. Analysis on the hydroplaning of aircraft tire under real texture pavement conditions[J]. China Journal of Highway and Transport, 2020, 33(10): 159-170. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.010
|
[20] |
张献民, 董倩, 吕耀志. 飞机主起落架构型对道面力学响应的影响[J]. 西南交通大学学报, 2014, 49(4): 675-681. doi: 10.3969/j.issn.0258-2724.2014.04.018
ZHANG X M, DONG Q, LU Y Z. Mechanical responses of pavement under aircrafts with different main landing gears[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 675-681. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.04.018
|
[21] |
CHO J R, KIM K W, YOO W S, et al. Mesh generation considering detailed tread blocks for reliable 3D tire analysis[J]. Advances in Engineering Software, 2004, 35(2): 105-113. doi: 10.1016/j.advengsoft.2003.10.002
|
[22] |
李兵. 计及复杂胎面花纹的子午线轮胎结构有限元分析[D]. 合肥: 中国科学技术大学, 2008.
LI B. Finite element structural analysis for radial tires with complex tread patterns considered[D]. Hefei: University of Science and Technology of China, 2008. (in Chinese)
|
[23] |
OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science & Technology, 2008, 22(1): 34-40.
|
[24] |
李志高. 汽车ABS的控制算法与仿真研究[D]. 武汉: 武汉理工大学, 2011.
LI Z G. The control algorithm and simulation study for automotive ABS[D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese)
|
[25] |
AYRES M. Improved models for risk assessment of runway safety areas[M/OL]. Washington, D.C. : The National Academies Press, 2011[2022-02-22]. https://www.nap.edu/catalog/13635/improved-models-for-risk-assessment-of-runway-safety-areas.
|
[26] |
HOSANG V A. Field survey and analysis of aircraft distribution on airport pavements[J/OL]. Transportation Research Board Special Report. [2021-02-21]. http://onlinepubs.trb.org/Onlinepubs/sr/sr175/175-015.pdf.
|
[27] |
FOUNDATION F S. Wet or contaminated runways[R/OL]. [2000-02-22]. https://www.flightsafety.org/files/alar_bn8-5-wetrwy.pdf.
|
1. |
薛钟松,贺小辉,王涛,曾思博,蒋星,罗森. 基于运动目标跟踪定位的航空安保飞行区碰撞风险报警. 国外电子测量技术. 2025(02): 106-112 .
![]() | |
2. |
江圣泽,邓小峰,夏登民,宋婉江. 某机场镐头机拆除水泥道面力学仿真与对比分析. 综合运输. 2023(05): 130-135+165 .
![]() |