• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CHEN Zhou, REN Ding, PIAO Lianhua, XU Xiaoshuang, CHANG Shan, LIU Jiyong, KONG Ren. Application of Molecular Dynamics Simulations to Study Drug-Membrane Interactions[J]. Journal of Beijing University of Technology, 2017, 43(12): 1802-1810. DOI: 10.11936/bjutxb2017090004
Citation: CHEN Zhou, REN Ding, PIAO Lianhua, XU Xiaoshuang, CHANG Shan, LIU Jiyong, KONG Ren. Application of Molecular Dynamics Simulations to Study Drug-Membrane Interactions[J]. Journal of Beijing University of Technology, 2017, 43(12): 1802-1810. DOI: 10.11936/bjutxb2017090004

Application of Molecular Dynamics Simulations to Study Drug-Membrane Interactions

More Information
  • Received Date: September 03, 2017
  • Available Online: August 03, 2022
  • Published Date: December 09, 2017
  • The interactions between drugs and bio-membranes play a key role in the in vivo behavior of drugs such as absorption, distribution, metabolism and elimination. Thus the clinical outcomes of drugs including both efficacy and side effects are directly related to the interactions of drugs and bio-membranes. Molecular dynamics simulations were used to study the drug-membrane systems, providing atomic details for optimization of chemical structure of drugs as well as drug delivery systems such as liposomes. Drug-membrane simulations from several aspects including bilayer membrane models, all atom and united atom models, coarse-grained models, and characteristic membrane properties were introduced. Several examples of drug-membrane simulations were also summarized.

  • [1]
    SEYDEL J K, COATS E A, CORDES H P, et al. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance[J]. Archiv der Pharmazie, 1994, 327(10):601-610. doi: 10.1002/(ISSN)1521-4184
    [2]
    van BALEN G P, MARTINET C A M, CARON G, et al. Liposome/water lipophilicity:methods, information content, and pharmaceutical applications[J]. Medicinal Research Reviews, 2004, 24(3):299-324. doi: 10.1002/(ISSN)1098-1128
    [3]
    KOPEC W, TELENIUS J, KHANDELIA H. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes[J]. FEBS Journal, 2013, 280(12):2785-2805. doi: 10.1111/febs.2013.280.issue-12
    [4]
    POHORILLE A, WILSON M A, NEW M H, et al. Concentrations of anesthetics across the water-membrane interface; the Meyer-Overton hypothesis revisited[J]. Toxicology Letters, 1998, 100/101:421-430. doi: 10.1016/S0378-4274(98)00216-1
    [5]
    RUDOLPH U, ANTKOWIAK B. Molecular and neuronal substrates for general anaesthetics[J]. Nature Reviews Neuroscience, 2004, 5(9):709-720. doi: 10.1038/nrn1496
    [6]
    UEDA I, YOSHIDA T. Hydration of lipid membranes and the action mechanisms of anesthetics and alcohols[J]. Chemistry and Physics of Lipids, 1999, 101(1):65-79. doi: 10.1016/S0009-3084(99)00056-0
    [7]
    THEWALT J, TIELEMAN D P. Biophysical experiments and simulation in nanoparticle-based drug delivery systems[J]. Journal of Drug Targeting, 2016, 24(9):768-773. doi: 10.1080/1061186X.2016.1221957
    [8]
    NAGLE J F. Area/lipid of bilayers from NMR[J]. Biophysical Journal, 1993, 64(5):1476-1481. doi: 10.1016/S0006-3495(93)81514-5
    [9]
    WOHLERT J, EDHOLM O. Dynamics in atomistic simulations of phospholipid membranes:nuclear magnetic resonance relaxation rates and lateral diffusion[J]. The Journal of Chemical Physics, 2006, 125(20):204703. doi: 10.1063/1.2393240
    [10]
    DICKEY A, FALLER R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior[J]. Biophysical Journal, 2008, 95(6):2636-2646. doi: 10.1529/biophysj.107.128074
    [11]
    TIELEMAN D P, FORREST L R, SANSOM M S, et al. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems:molecular dynamics simulations[J]. Biochemistry, 1998, 37(50):17554-17561. doi: 10.1021/bi981802y
    [12]
    BERGER O, EDHOLM O, JÄHNIG F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature[J]. Biophysical Journal, 1997, 72(5):2002-2013. doi: 10.1016/S0006-3495(97)78845-3
    [13]
    TIELEMAN D P, BERENDSEN H J C. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters[J]. The Journal of Chemical Physics, 1996, 105(11):4871-4880. doi: 10.1063/1.472323
    [14]
    PASTOR R W, MACKERELL A D. Development of the CHARMM force field for lipids[J]. The Journal of Physical Chemistry Letters, 2011, 2(13):1526-1532. doi: 10.1021/jz200167q
    [15]
    DICKSON C J, MADEJ B D, SKJEVIK A A, et al. Lipid14:the amber lipid force field[J]. Journal of Chemical Theory and Computation, 2014, 10(2):865-879. doi: 10.1021/ct4010307
    [16]
    DOMA AŃSKI J, STANSFELD P J, SANSOM M S P, et al. Lipidbook:a public repository for force-field parameters used in membrane simulations[J]. The Journal of Membrane Biology, 2010, 236(3):255-258. doi: 10.1007/s00232-010-9296-8
    [17]
    MARRINK S J, RISSELADA H J, YEFIMOV S, et al. The MARTINI force field:coarse grained model for biomolecular simulations[J]. The Journal of Physical Chemistry B, 2007, 111(27):7812-7824. doi: 10.1021/jp071097f
    [18]
    MBECK J P M, ERIKSSON E S E, LAAKSONEN A, et al. Molecular dynamics studies of liposomes as carriers for photosensitizing drugs:development, validation, and simulations with a coarse-grained model[J]. Journal of Chemical Theory and Computation, 2014, 10(1):5-13. doi: 10.1021/ct400466m
    [19]
    ALLEN W J, LEMKUL J A, BEVAN D R. GridMAT-MD:a grid-based membrane analysis tool for use with molecular dynamics[J]. Journal of Computational Chemistry, 2009, 30(12):1952-1958. doi: 10.1002/jcc.v30:12
    [20]
    PRONK S, P LL S, SCHULZ R, et al. GROMACS 4.5:a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7):845-854. doi: 10.1093/bioinformatics/btt055
    [21]
    PALL S, ABRAHAM M J, KUTZNER C, et al. Tackling exascale software challenges in molecular dynamics simulations with GROMACS[C]//Solving Software Challenges for Exascale:International Conference on Exascale Applications and Software. Stockholm:Springer International Publishing, 2015:3-27.
    [22]
    VERMEER L S, DE GROOT B L, REAT V, et al. Acyl chain order parameter profiles in phospholipid bilayers:computation from molecular dynamics simulations and comparison with 2H NMR experiments[J]. European Biophysics Journal with Biophsics Letters, 2007, 36(8):919-931. doi: 10.1007/s00249-007-0192-9
    [23]
    GULLAPALLI R R, DEMIREL M C, BUTLER P J. Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer[J]. Physical Chemistry Chemical Physics, 2008, 10(24):3548-3560. doi: 10.1039/b716979e
    [24]
    BUTTERWORTH J F, STRICHARTZ G R. Molecular mechanisms of local anesthesia:a review[J]. Anesthesiology, 1990, 72(4):711-734. doi: 10.1097/00000542-199004000-00022
    [25]
    CAFISO D S. Dipole potentials and spontaneous curvature:membrane properties that could mediate anesthesia[J]. Toxicology Letters, 1998, 100:431-439. https://www.sciencedirect.com/science/article/pii/S0378427498002173
    [26]
    WANG G K, CALDERON J, JAW S J, et al. State-dependent block of Na+ channels by articaine via the local anesthetic receptor[J]. The Journal of Membrane Biology, 2009, 229(1):1-9. doi: 10.1007/s00232-009-9170-8
    [27]
    MOJUMDAR E H, LYUBARTSEV A P. Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer[J]. Biophysical Chemistry, 2010, 153(1):27-35. doi: 10.1016/j.bpc.2010.10.001
    [28]
    HOGBERG C J, MALINIAK A, LYUBARTSEV A P. Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer[J]. Biophysical Chemistry, 2007, 125(2/3):416-424. https://www.sciencedirect.com/science/article/pii/S0301462206003012
    [29]
    HOGBERG C J, LYUBARTSEV A P. Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer[J]. Biophysical Journal, 2008, 94(2):525-531. doi: 10.1529/biophysj.107.104208
    [30]
    DONNELLY M T, HAWKEY C J. Review article:COX-Ⅱ inhibitors-a new generation of safer NSAIDs[J]. Alimentary Pharmacology & Therapeutics, 1997, 11(2):227-235.
    [31]
    BOGGARA M B, KRISHNAMOORTI R. Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes:a molecular dynamics simulation study[J]. Biophysical Journal, 2010, 98(4):586-595. doi: 10.1016/j.bpj.2009.10.046
    [32]
    YOUSEFPOUR A, AMJAD IRANAGH S, NADEMI Y, et al. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane[J]. International Journal of Quantum Chemistry, 2013, 113(15):1919-1930. doi: 10.1002/qua.24415
    [33]
    CHEN X, MUKWAYA E, WONG M S, et al. A systematic review on biological activities of prenylated flavonoids[J]. Pharmaceutical Biology, 2014, 52(5):655-660. doi: 10.3109/13880209.2013.853809
    [34]
    LIN Y S, TSAI P H, KANDASWAMI C C, et al. Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells[J]. Cancer Science, 2011, 102(10):1829-1839. doi: 10.1111/j.1349-7006.2011.02035.x
    [35]
    卜晓斐, 郝本前, 徐为人, 等. B环不同羟基取代影响黄酮苷元透膜能力的分子动力学模拟研究[J].中草药, 2012, 43(8):1553-1559.

    BU X F, HAO B Q, XU W R, et al. Molecular dynamic simulation on membrane permeability of flavonoid aglycones substituted wiith different hydroxyl positions on B ring[J]. Chinese Traditional and Herbal Drugs, 2012, 43(8):1553-1559. (in Chinese)
    [36]
    ERIKSSON E S, SANTOS D J, GUEDES R C, et al. Properties and permeability of hypericin and brominated hypericin in lipid membranes[J]. Journal of Chemical Theory and Computation, 2009, 5(12):3139-3149. doi: 10.1021/ct9002702
    [37]
    BANGALORE S, MESSERLI F H, KOSTIS J B, et al. Cardiovascular protection using beta-blockers[J]. Journal of the American College of Cardiology, 2007, 50(7):563-572. doi: 10.1016/j.jacc.2007.04.060
    [38]
    ALBERTINI G, DONATI C, PHADKE R S, et al. Thermodynamic and structural effects of propranolol on DPPC liposomes[J]. Chemistry and Physics of Lipids, 1990, 55(3):331-337. doi: 10.1016/0009-3084(90)90171-M
    [39]
    AZIZI K, KOLI M G. Molecular dynamics simulations of Oxprenolol and Propranolol in a DPPC lipid bilayer[J]. Journal of Molecular Graphics and Modelling, 2016, 64:153-164. doi: 10.1016/j.jmgm.2016.01.009
    [40]
    MARRINK S J, TIELEMAN D P. Perspective on the Martini model[J]. Chemical Society Reviews, 2013, 42(16):6801-6822. doi: 10.1039/c3cs60093a
  • Related Articles

    [1]WANG Jun, ZHANG Yue, ZHU Xingguang, XIA Guodong. Heterogeneous Icing Process Under the Influence of Solid-Water Interfacial Heat Transfer[J]. Journal of Beijing University of Technology, 2025, 51(2): 130-139. DOI: 10.11936/bjutxb2023040007
    [2]SANG Lixia, LEI Lei, CHEN Pingfang, WANG Jun. Interaction of Hydroxylated Anatase TiO2 Surfaces and H2O by Molecular Dynamics Simulation[J]. Journal of Beijing University of Technology, 2020, 46(2): 180-190. DOI: 10.11936/bjutxb2018070010
    [3]XU Xianjin, WANG Cunxin. Applications of Molecular Docking:Beyond the Drug Discovery[J]. Journal of Beijing University of Technology, 2017, 43(12): 1872-1880. DOI: 10.11936/bjutxb2017050029
    [4]GOU Xiaojun, SUN Xin, DU Wenyi, ZUO Ke, LIANG Li, LIU Wei, WAN Hua, HU Jian-ping. Molecular Recognition and Inhibition Mechanism of Benzopyrone Compounds With Skp2 Proteins[J]. Journal of Beijing University of Technology, 2017, 43(12): 1846-1856. DOI: 10.11936/bjutxb2017040017
    [5]SU Jiguo, WANG Weibu, CHEN Weizu, WANG Cunxin. Research Progress in Computer Simulations of Protein Folding[J]. Journal of Beijing University of Technology, 2017, 43(12): 1818-1827. DOI: 10.11936/bjutxb2017060036
    [6]SUN Tingguang, WEI Bingsheng, CHENG Qianwei. Interactions of Melittin With Phospholipid Bilayers by Coarse-grained Molecular Dynamics[J]. Journal of Beijing University of Technology, 2017, 43(12): 1794-1801. DOI: 10.11936/bjutxb2017070049
    [7]CONG Xiaojing, WANG Cunxin. Class A GPCR:Structure, Function, Computer-aided Drug Design and Molecular Dynamics Simulations[J]. Journal of Beijing University of Technology, 2017, 43(12): 1769-1778. DOI: 10.11936/bjutxb2017060027
    [8]YANG Qingsheng, SHANG Junjun, LIU Xia. Coarse-grained Molecular Dynamics Model and Mechanical Properties of Multi-layer Graphene[J]. Journal of Beijing University of Technology, 2016, 42(12): 1798-1804. DOI: 10.11936/bjutxb2016080021
    [9]ZHANG Guang-lei, ZHAO Yuan-yuan, FU Hua, QIN Guo-qiang, FENG Wen-jie. Glass Formation and Nanocrystalline of Fe75Cr12.5Mo12.5 Alloy by Molecular Dynamics Simulation[J]. Journal of Beijing University of Technology, 2014, 40(5): 733-737. DOI: 10.3969/j.issn.0254-0037.2014.05.016
    [10]Wang Shusen, Zeng Meiyun, Wang Zhizhong. The Study on Morphology of Molecular Sieve Carbon Membranes[J]. Journal of Beijing University of Technology, 1995, 21(4): 90-96.
  • Cited by

    Periodical cited type(2)

    1. 李雯,卢守四,张婷婷,刘平,宋杰,段云侠,乔虹. 米氮平生物等效性预试验餐前不等效、餐后等效的析因分析. 中国医药导报. 2023(34): 11-15 .
    2. 余丹丹,邬瑞光. 等温滴定量热技术在药物研究中的应用. 中草药. 2018(22): 5463-5467 .

    Other cited types(7)

Catalog

    Article views (201) PDF downloads (97) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return