• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
YANG Qing-sheng, FENG Si-wei, TAN Xiang-jun. Stress Fields and Singularities at Notch and Crack Tips of Piezoelectric Materials[J]. Journal of Beijing University of Technology, 2006, 32(S1): 41-45.
Citation: YANG Qing-sheng, FENG Si-wei, TAN Xiang-jun. Stress Fields and Singularities at Notch and Crack Tips of Piezoelectric Materials[J]. Journal of Beijing University of Technology, 2006, 32(S1): 41-45.

Stress Fields and Singularities at Notch and Crack Tips of Piezoelectric Materials

More Information
  • Received Date: May 09, 2006
  • Available Online: December 29, 2022
  • The present paper investigated the stress distribution at notch and crack tips of piezoelectric materials by coupled electric and elastic FE method. The singularities of the stress at the tips are emphasized for different notch angles and different electric strengths. The numerical results show that the notch angle can affect obviously the singularities of the stress and slightly the stress level in the front of the tips. The electric field induces oscillation of the stress, but the stress has relatively small level.
  • [1]
    PAK Y E. Crack extension force in a piezoelectric material[J]. J Appl Mech,1990, 57(3): 643-653.
    [2]
    SUO H. On the fracture mechanics of piezoelectric solids[J].Int J Soilds Struct, 1992, 29(21): 2613-2622.
    [3]
    SUO Z, KUO C M, BARNETT D M, et al. Fracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids, 1992, 40(4): 739-765.
    [4]
    WANG B. Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric ceramics[J]. Int J Solids Struct, 1992, 29 (3): 739-765.
    [5]
    候密山.压电材料平面应力状态的直线裂纹问题的一般解[J].力学学报,1997,29(5):595—599.HOU Mi-shan. A general solution of the plane stress problems in piezoelectric media with line cracks[J]. Acta Mechnica Sinica, 1997, 29(5): 595-599.
    [6]
    SHI W. Rigid line inclusions under antiplane deformation and inplane electric field in piezoelectric materials[J]. Engng Fract Mech, 1997, 56(2): 265-274.
    [7]
    SOSA H A, PAK Y E. Three dimensional eigenfunction analysis of a crack in a piezoelectric material[J]. Int J Solids Struct, 1990, 26(1): 1-15.
    [8]
    SOSA H A. Plane problems in piezoelectric media with defects[J]. Int J Solids Struct, 1991, 28(4): 491-505.
    [9]
    QIN Q H. Solving anti-plane problems of piezoelectric materials by the trefftz finite element approach[J]. Appl Mech Revi, 2003, 31(6): 461-468.
    [10]
    YANG F. Fracture mechanics for I model crack in piezoelectric materials[J]. Int J Solids Strut, 2001, 38(21): 3813-3830.
    [11]
    ZHANG T Y, GAOCF. Fracture behaviors of piezoelectric materials[J]. Theo Appl Frac Mech, 2004, 41(1-3): 339-379.
    [12]
    QIN Q H. Fracture Mechanics of piezoelectric Materials[M]. Southampton: WIT press, 2001.
    [13]
    ALLIK H, HUGHES T J R. Finite element method for piezoelectric vibration[J]. Int J Num Meth Eng, 1970, 2(2): 151-157.

Catalog

    Article views (42) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return