• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Jin-ru, WANG Meng. Linear Wavelet Density Estimation for Biased Data[J]. Journal of Beijing University of Technology, 2013, 39(11): 1752-1755.
Citation: WANG Jin-ru, WANG Meng. Linear Wavelet Density Estimation for Biased Data[J]. Journal of Beijing University of Technology, 2013, 39(11): 1752-1755.

Linear Wavelet Density Estimation for Biased Data

More Information
  • Received Date: October 07, 2012
  • Available Online: November 02, 2022
  • To obtain Lp risk convergence rate, for a kind of density which has noise data, the linear wavelet estimator is constructed. In particular, when rp, the linear wavelets estimator is simple and the convergence rate is better than nonlinear estimator. In addition, when the bias function g(x) ≡1, the model is the case which has no noise, and the convergence rate is optimal and generalizes the result which was gotten.
  • [1]
    RAMIREZ Pepa, VIDAKOVIC Brani.Wavelet density estimation for stratified size-biased sample[J].Journal of Stratified Planning and Inference, 2010, 140 (2) :419-432.
    [2]
    RAO C R.On discrete distributions arising out of methods of ascertainment[J].The Indian Journal of Statistics Series A, 1965, 27 (2/4) :311-324.
    [3]
    VARDI Y.Nonparametric estimation in the presence of length bias[J].The Annals of Statistics, 1982, 10 (2) :616-620.
    [4]
    JONES M C.Kernel density estimation for length-biased data[J].Biometrika, 1991, 78 (3) :511-519.
    [5]
    EFROMOVICH S.Density estimation for biased data[J].The Annals of Statistics, 2004, 32:1137-1161.
    [6]
    CHESNEAU C.Wavelet block thresholding for density estimation in the presence of bias[J].Journal of the Korean Statistical Society, 2010, 39:43-53.
    [7]
    INGRID Daubechies.Orthogonal bases of compactly supported wavelets[J].Communication in Pure and Applied Mathematics, 1988, 41:909-996.
    [8]
    HARDLE W, KERKYACHARIAN G, PICARD D, et al.Wavelets, approximation and statistical applications[M].New York:Springer-Verlag, 1997:114-122.
  • Related Articles

    [1]XU Wenyang, WANG Jinru. Wavelet Pointwise Estimation of the Derivative of Density Based on Biased Data[J]. Journal of Beijing University of Technology, 2018, 44(2): 315-320. DOI: 10.11936/bjutxb2017050051
    [2]ZENG Xiaochen, TIAN Xingyan, WANG Jinru. Wavelet Estimation for Convolution of Densities With Additive Noises[J]. Journal of Beijing University of Technology, 2018, 44(2): 310-314. DOI: 10.11936/bjutxb2017040008
    [3]WANG Jin-ru, ZHANG Qing-qing. Wavelet Estimation of the Density Functions Under Fourier-oscillating Situation[J]. Journal of Beijing University of Technology, 2016, 42(10): 1597-1600. DOI: 10.11936/bjutxb2016040010
    [4]WANG Jinru, ZHANG Qingqing, GENG Zijuan. Consistency of D-dimensional Wavelet Estimators[J]. Journal of Beijing University of Technology, 2016, 42(8): 1270-1274. DOI: 10.11936/bjutxb2015090079
    [5]LI Ru-wei, BAO Chang-chun. Waveform Interpolation Speech Coding Algorithm at Low Bit Rates on the Basis of Lifting Wavelet Decomposition[J]. Journal of Beijing University of Technology, 2011, 37(12): 1779-1785.
    [6]JI Xiao-mei, WANG Shu, WANG Ke. The Convergence of a Finite Element Method for the Initialboundary Value Problem to Linear Scalar Conservation Laws[J]. Journal of Beijing University of Technology, 2007, 33(4): 428-432.
    [7]Zhou Junling. On the Convergence in Complete Lattices[J]. Journal of Beijing University of Technology, 1999, 25(2): 50-54.
    [8]Zhang Haibin, Xue Yi. A Class of 2-Order Convergence Algorithm for One Dimension Optimization Problem[J]. Journal of Beijing University of Technology, 1999, 25(2): 7-12.
    [9]Zhu Mcifang. Q-quadratic Convergence for A Subclass of Nonlinear ABS Algorithms[J]. Journal of Beijing University of Technology, 1990, 16(2): 31-35.
    [10]Zhu Meifang. Generalization of Nonlinear ABS Algorithm and Its Convergence Properties[J]. Journal of Beijing University of Technology, 1989, 15(4): 21-26.

Catalog

    Article views (12) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return