• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
YIN Bao-cai, SU Shi-qian. Design of Face Image Retrieval System[J]. Journal of Beijing University of Technology, 2005, 31(4): 337-341.
Citation: YIN Bao-cai, SU Shi-qian. Design of Face Image Retrieval System[J]. Journal of Beijing University of Technology, 2005, 31(4): 337-341.

Design of Face Image Retrieval System

More Information
  • Received Date: June 08, 2004
  • Available Online: November 21, 2022
  • To retrieval directly information with images, by using the face detection technique based on the gravity-center template matching method and the face recognition technique based on methods of the principal component analysis and the linear discriminative analysis. To the given video sequence, the system can retrieve face image from big face image database on time. Experimental results show that the system is provided with good human-machine interface, high retrieval rate, short retrieval time and can well satisfy the user's requirements.
  • [1]
    YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images:A survey[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24(1):34-58.
    [2]
    GOVINDARAJU V, SRIHARI S N, SHER D B. A computational model for face location[A]. Proc IEEE Conf Computer Vision[C]. San Jose, CA:IEEE Computer Society Press, 1990. 718-721.
    [3]
    HSU Rein-lien, ABDEL-MOTTALEB Mohamed, JAIN A K. Face detection in color images[J]. IEEE Trans Pattern Anal ysis and Machine Intelligence, 2002, 21(5):696-706.
    [4]
    MIAO J, YIN B, WANG K, et al. A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template[J]. Pattern Recognition, 1999, 32(7):1237-1248.
    [5]
    ROWLEY Henry A, BALUJA Shumeet, KANADE Takeo. Neural network-based face detection[J]. IEEE Translation on Pattern Analysis and Machine Intelligence, 1998, 20(1):29-38.
    [6]
    OSUNA Edgar, FREUND Robert, GIROSI Federico. Training support vector machines:An application to face detection[A]. Proc IEEE Conf Computer Vision and Pattern Recognition[C]. San Juan, PR:IEEE Computer Society Press, 1997. 130-136.
    [7]
    VIOLA Paul, JONES Michael J. Rapid object detection using a boosted cascade of simple featrues[A]. Proc IEEE Conf Computer Vision and Pattern Recognition[C]. Kauai, HI:IEEE Computer Society Press, 2001. 511-518.
    [8]
    LIU Ce, SHUM Hueng-yeung. Kullback-leibler boosting[A]. Proc IEEE Conf Computer Vision and Pattern Recognition[C]. Madison, WI:IEEE Computer Society Press, 2003. 587-594.
    [9]
    MANJUNATH B S, CHELLAPPA R, MALSBURG C V D. A feature based approach to face recognition[A]. Proc IEEE Conf Computer Vision and Pattern Recognition[C]. Champaign, IL:IEEE Computer Society Press, 1992. 373-378.
    [10]
    TURK M, PENTLANDA. Eigen-faces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
    [11]
    BELHUMEUR Peter N, HESPANHA Joao, DAVID J. Kriegman eigenfaces vs. fisherfaces:Recognition using class specific linear projection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2001, 23(2):228-233.
    [12]
    BRUNELLI R, FALAVIGNA D, POGGIO T, et al. Automatic person recognition by acoustic and geometric features[J]. Machine Vision and Applications, 1995, 8:317-325.

Catalog

    Article views (21) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return