Citation: | WANG Shu, BAI Jinxiong. Regularity Criteria for the MHD Equations With Partial Dissipation and Magnetic Diffusion[J]. Journal of Beijing University of Technology, 2013, 39(1): 143-148,152. |
[1] |
SERMANGE M, TEMAM R. Some mathematical questions related to the MHD equations[J]. Comm Pure Appl Math, 1983, 36(5): 635- 664.
|
[2] |
WU J H. Viscous and inviscous magneto-hydrodynamics equations [J]. Journal D'Analyse Mathematique, 1997, 73(1): 251- 265.
|
[3] |
WU J H, CAO C S. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J]. Advances in Math, 2011, 226(2): 1803- 1822.
|
[4] |
CHAE D. Global regularity for the 2D Boussinesq equations with partial viscosity terms [J]. Advances in Math, 2006, 203(2): 497- 513.
|
[5] |
DANCHIN R, PAICU M. Global existence results for the anisotropic Boussinesq system in dimension two [J]. Math Models Methods Appl Sci, 2011, 21(3): 421- 457.
|
[6] |
DUVAUT G,LIONS J L.Inéquations en thermo-élasticitéet magnétohydrodynamique[J].Arch Rational MechAnal,1972,46(4):241-279.
|
[7] |
HOU T Y,LI C M.Global well-posedness of the viscousBoussinesq equations[J].Discete and ContinuousDynamics Systems,2005,12(1):1-12.
|
[8] |
KEING C E,PONCE G,VEGA L.Well-posedness of theinitial value problem for the Korteweg-de Vries equation[J].J Amer Math Soc,1991,4(2):323-347.
|
[9] |
CAO C S,WU J H.Two regularity criteria for the 3D MHDequations[J].J Diff Equa,2010,248(9):2263-2274.
|
[10] |
CHAE D H,WU J H.The 2D Boussinesq equations withlogarithmically supercritical velocities[J].Advances inMathematics,2012,230(4/5/6):1618-1645.
|
[11] |
CAO C S,TITI E S.Global well-posedness of the 3Dprimitive equations with partial vertical turbulence mixingheat diffusion[J].Communications in MathematicalPhysics,2012,310(2):537-568.
|
[12] |
HOU T Y,SHI Z Q,WANG S.On singularity formationof a 3D model for incompressible Navier-Stokes equations[J].Adv Math,2012,230(2):607-641.
|
[13] |
PENG Y J,WANG S,GU Q L.Relaxation limit andglobal existence of smooth solutions of compressible Euler-Maxwell equations[J].Siam J Math Anal,2011,43(2):944-970.
|
[14] |
HOU T Y,LI C M,SHI Z Q,et al.On singularityformation of a nonlinear nonlocal system[J].ArchRation Mech Anal,2011,199(1):117-144.
|