• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Shu, BAI Jinxiong. Regularity Criteria for the MHD Equations With Partial Dissipation and Magnetic Diffusion[J]. Journal of Beijing University of Technology, 2013, 39(1): 143-148,152.
Citation: WANG Shu, BAI Jinxiong. Regularity Criteria for the MHD Equations With Partial Dissipation and Magnetic Diffusion[J]. Journal of Beijing University of Technology, 2013, 39(1): 143-148,152.

Regularity Criteria for the MHD Equations With Partial Dissipation and Magnetic Diffusion

More Information
  • Received Date: May 23, 2011
  • Available Online: January 10, 2023
  • The regularity for the 2D incompressible MHD equations with partial dissipation and magnetic diffusion was studied.A regularity criteria was given for the 2D incompressible MHD equations with partial dissipation and magnetic diffusion(The velocity field and the magnetic field had the partial derivative of two-order type only in the same one direction).It is proved that the uniqueness local classical solution of the 2D incompressible MHD equations with partial dissipation and magnetic diffusion will be global if the partial derivative of magnetic in one direction satisfies one regularity criteria.
  • [1]
    SERMANGE M, TEMAM R. Some mathematical questions related to the MHD equations[J]. Comm Pure Appl Math, 1983, 36(5): 635- 664.
    [2]
    WU J H. Viscous and inviscous magneto-hydrodynamics equations [J]. Journal D'Analyse Mathematique, 1997, 73(1): 251- 265.
    [3]
    WU J H, CAO C S. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J]. Advances in Math, 2011, 226(2): 1803- 1822.
    [4]
    CHAE D. Global regularity for the 2D Boussinesq equations with partial viscosity terms [J]. Advances in Math, 2006, 203(2): 497- 513.
    [5]
    DANCHIN R, PAICU M. Global existence results for the anisotropic Boussinesq system in dimension two [J]. Math Models Methods Appl Sci, 2011, 21(3): 421- 457.
    [6]
    DUVAUT G,LIONS J L.Inéquations en thermo-élasticitéet magnétohydrodynamique[J].Arch Rational MechAnal,1972,46(4):241-279.
    [7]
    HOU T Y,LI C M.Global well-posedness of the viscousBoussinesq equations[J].Discete and ContinuousDynamics Systems,2005,12(1):1-12.
    [8]
    KEING C E,PONCE G,VEGA L.Well-posedness of theinitial value problem for the Korteweg-de Vries equation[J].J Amer Math Soc,1991,4(2):323-347.
    [9]
    CAO C S,WU J H.Two regularity criteria for the 3D MHDequations[J].J Diff Equa,2010,248(9):2263-2274.
    [10]
    CHAE D H,WU J H.The 2D Boussinesq equations withlogarithmically supercritical velocities[J].Advances inMathematics,2012,230(4/5/6):1618-1645.
    [11]
    CAO C S,TITI E S.Global well-posedness of the 3Dprimitive equations with partial vertical turbulence mixingheat diffusion[J].Communications in MathematicalPhysics,2012,310(2):537-568.
    [12]
    HOU T Y,SHI Z Q,WANG S.On singularity formationof a 3D model for incompressible Navier-Stokes equations[J].Adv Math,2012,230(2):607-641.
    [13]
    PENG Y J,WANG S,GU Q L.Relaxation limit andglobal existence of smooth solutions of compressible Euler-Maxwell equations[J].Siam J Math Anal,2011,43(2):944-970.
    [14]
    HOU T Y,LI C M,SHI Z Q,et al.On singularityformation of a nonlinear nonlocal system[J].ArchRation Mech Anal,2011,199(1):117-144.

Catalog

    Article views (9) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return