• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
FAN Chunyan, YAO Hailou. Localizations of Cotilting Comodules[J]. Journal of Beijing University of Technology, 2013, 39(1): 157-160.
Citation: FAN Chunyan, YAO Hailou. Localizations of Cotilting Comodules[J]. Journal of Beijing University of Technology, 2013, 39(1): 157-160.

Localizations of Cotilting Comodules

More Information
  • Received Date: July 14, 2011
  • Available Online: January 10, 2023
  • To study the properties of the localizations of cotilting comodules,let C be a coalgebra over a field k,and T a cotilting left C-comodule.Idempotents in the dual algebras of coalgebras are used to study the localizations in cotilting comodules and complements of partial cotilting comodules,and some interesting results are obtained.
  • [1]
    SIMSON D. Cotilted coalgebras and tame comodule type[J]. The Arabian Journal for Science and Engineering, 2008, 33(2C): 421- 445.
    [2]
    GABRIEL P. Des categories abeliennes[M]. Bull Soc Math France, 1962, 90: 323- 448.
    [3]
    CUADRA J, GOMEZ-TORRECILLAS J. Idempotents and Morita-Takeuchi theory[J]. Communication in Algebra, 2002, 30(5): 2405- 2426.
    [4]
    NAVARRO G. Simple comodules and localization in coalgebras[D]. Granada: Department of Algebra, University of Granada, 2006: 141-164.
    [5]
    HUGEL L A, HAPPEL D, KRAUSE H. Handbook of tilting theory[M]. New York: Cambridge University Press, 2007: 259- 316.
    [6]
    NAVARRO G. Some remarks on localization in coalgebras[J]. Communication in Algebra, 2008, 36(9): 3447- 3466.
    [7]
    JARA P, MERINO L, NAVARRO G, et al. Localization in coalgebras, stable localizations and path coalgebras[J]. Comm Algebra, 2006, 34: 2843- 2856.
    [8]
    HAPPEL D. Triangulated categories in the representation theory of finite dimensional algebras[M]. New York: Cambridge University Press, 1988: 93-149.
  • Related Articles

    [1]YAO Hailou, LÜ Xinlong. Tilting Dimensions of Skew Group Algebras[J]. Journal of Beijing University of Technology, 2021, 47(2): 201-208. DOI: 10.11936/bjutxb2019090012
    [2]YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006
    [3]SU Dong, YANG Shilin. Green Rings of the Δ-associative Algebras[J]. Journal of Beijing University of Technology, 2017, 43(8): 1275-1282. DOI: 10.11936/bjutxb2016070014
    [4]YAO Hailou, ZHOU Lili. Generalized Path Algebras and Their Hochschild Cohomology[J]. Journal of Beijing University of Technology, 2016, 42(4): 628-631,640. DOI: 10.11936/bjutxb2015060071
    [5]HAN Guo-qiang, YAO Hai-lou. Minimal Representation-infinite Incidence Algebras[J]. Journal of Beijing University of Technology, 2012, 38(3): 476-480.
    [6]HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120.
    [7]YAO Hai-lou, FAN Wei-li. Primary Coalgebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1110-1115.
    [8]HU Zhi-hua. Differential Algebraic Attack of Serpent[J]. Journal of Beijing University of Technology, 2010, 36(5): 651-653.
    [9]YAO Hai-lou, LI Hui, PING Yan-ru. The Hochschild Cohomology of the Weak Entwining Structure of a Path Algebra and a Path Coalgebra[J]. Journal of Beijing University of Technology, 2010, 36(2): 274-279.
    [10]Yang Shilin. The Maschke's Theorem for Hopf Algebras─A New Version of the Proof[J]. Journal of Beijing University of Technology, 1998, 24(4): 55-57.

Catalog

    Article views (9) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return