Citation: | SHOU Yu-ting, LIU Zhang-he, DUAN Xin-sheng. Weighted Mean Optimum Order Method of Multi-objective Decision Problems in Fuzzy Environment[J]. Journal of Beijing University of Technology, 2002, 28(2): 229-232. |
[1] |
GARDNER C S, KRUSKAL J M, MIURA R M. Method for solving the Koeteweg-de Vries equation[J]. Phys Rev Lett, 1967, 19:1095-1105.
|
[2] |
MATSUNO Y. Bilinear transform method[M]. London:Academic Press, 1984.
|
[3] |
WEISS J, TABOR M, GARNEVADE G. The painleve property for partial differential equations[J]. J Math Phys,1983, 24:522-543.
|
[4] |
WANG M L. Exact solutions for a combined KdV-Burgers equation[J]. Phys Lett, 1996, A213:279-287.
|
[5] |
FENG X. Exploratory approach to explicit solution of nonlinear evolution equation[J]. Inter J Theor Phys, 2000,39(1):207-222.
|
[6] |
DEY B,KHARE A, KUMAR C N. Stationary solitons of the fifth-order KdV-type equations and theirstabilities[J]. Phys Lett, 1996, A233:449-452.
|
[7] |
FENG X. Reviews on analytical solutions to the KdV related equations[J]. J Jishou Univ, 1998, 19:6-14.
|
[8] |
YNAG Z J. Travelling wave solutions to nonlinear evolution and wave equations[J]. J Phys:A Math Gen, 1994,27:2837-2855.
|
[9] |
XIONG S L. An analytical solution to Burgers-KdV equation[J]. Chin Sci Bull, 1989, 34(1):26-29.
|
[10] |
FAN E G, ZHANG H Q. A note on the homogeneous balance method[J]. Phys Lett, 1998, A246:403-406.
|
[11] |
PARKES E J, DUFFY B R Traveling solitary wave solutions to a compound KdV-Burgers equation[J]. Phys Lett, 1997, A229:217-220.
|
[12] |
YAMATOTO Y, TAKIZAWA E. On a solution of nonlinear time-evolution equation of fifth order[J]. J PhysSoc Japan, 1981, 50:L1421-1422.
|
[13] |
COFFEY M W. On series expansions giving closed-form solutions to Korteweg-de Vries equations[J]. SIAM JAppl Math, 1990, 50:1580-1592.
|
[14] |
HEREMAN W. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraicmethod[J]. J Phys:A Math Gen, 1986, 19:607-628.
|
[15] |
FEREMAN W, TAKAOKA M. Solitary wave solutions of nonlinear evolution and wave equationusing a directmethod and MACSYMA[J]. J Phys:A Math Gen, 1990, 23:4805-4822.
|
[16] |
NOZAKI K. Hirota's method and the singular manifold expansion[J]. J Phys Soc Japan, 1987, 57:3052-3054.
|
[17] |
HUANG G, LUO S, DAI X. Exact and explicit solitary waive solutions to a model equation for shallow water[J].Phys Lett, 1989, A139:373-374.
|
[18] |
DAI X, DAI J. Some solitary wave solutions for families of generalized higher oder KdV equations[J]. PhysLett, 1989, A142:367-370.
|
[19] |
YANG Z J. Exact solitary wave solutions to a class of generalized odd-order KdV equations[J]. Int J TheorPhys, 1995, 34(4):641-647.
|
[20] |
DAI J, DAI X. A set of exact and explicit solitary wave solutions for a calss of generalized KdV equationswith arbitrarily odd order derivatives (a sieving method in a closed function calss)[J]. Phys Lett, 1990, A146(6):324-328.
|
[21] |
MA W. Travelling wave solutions to a seventh order generalized KdV equation[J]. Phys Lett, 1993, A180:221-224.
|
[22] |
ZHU Z. Solitary wave solutions to the 2n+1 order KdV-type equations[J]. Acta Phys Sin, 1996, 45:1777-1781.
|
[23] |
DUFFY B R, PARKES E J. Travelling solitary waves solutions to a seventh-order generalized KdV equation[J].Phys Lett, 1996, A214:271-272.
|
[24] |
KARPMAN V I. Radiating solitons of the fifth order KdV-type equations[J]. Phys Lett, 1996, A210:77-84.
|
[1] | ZHANG Ailin, ZHANG Xun, MA Xiaofei, LI Chao. Research and Analysis of the Lateral Performance of the Prefabricated Steel Plate Shear Wall Connection[J]. Journal of Beijing University of Technology, 2018, 44(6): 878-888. DOI: 10.11936/bjutxb2017040049 |
[2] | LI Yong-mei, ZHOU Bing, ZHANG Wei-jing, LI Yu-zhan. Pushover Analysis of Spatial Infilled Wall-RC Frame Structures[J]. Journal of Beijing University of Technology, 2014, 40(11): 1660-1665. |
[3] | ZHANG Yue, GAO Xiang-yu, YIN Xue-jun, FU Xue-zhi. Structure and Vibration-reduction Study on Tuning Mass Dampered-buckling Restrained Brace(Ⅰ)[J]. Journal of Beijing University of Technology, 2014, 40(10): 1503-1511. |
[4] | ZHANG Jian-wei, CHI Yan-zhong, CAO Wan-lin, DONG Hong-ying. Dynamic Performance of Low-Rise Recycled Aggregate Concrete Shear Walls With Concealed Bracings[J]. Journal of Beijing University of Technology, 2013, 39(8): 1179-1186. |
[5] | SUN Guo-hua, GU Qiang, HE Ruo-quan, YU Yin-quan, FANG You-zhen. Behavior of Shear Connectors of Partially-restrained Steel Frame with RC Infill Walls[J]. Journal of Beijing University of Technology, 2011, 37(11): 1661-1667,1676. |
[6] | GAO Xiang-yu, ZHANG Teng-long, HUANG Hai-tao, WANG Xin, REN Jie. The Design Method for Improving the Aseismatic Performance of Concentrically Braced Steel Frames with Buckling-restrained Brace[J]. Journal of Beijing University of Technology, 2010, 36(9): 1206-1214. |
[7] | SUN Guo-hua, HE Ruo-quan, GU Qiang, YU Yin-quan, FANG You-zhen. Overstrength and Strength Reduction Factor of Partially Restrained Steel Frame With RC Infill Walls[J]. Journal of Beijing University of Technology, 2009, 35(10): 1338-1343. |
[8] | GAO Xiang-yu, ZHANG Hui, DU Hai-yan, LIANG Feng. Experiment on Conformation and Seismic Performance of Buckling-restrained Brace Made of Composed Hot-rolled Angle Steel[J]. Journal of Beijing University of Technology, 2008, 34(5): 498-503,538. |
[9] | ZHAO Zhang-jun, CAO Wan-lin, CHANG Wei-hua, ZHANG Jian-wei. Static Nonlinear Analysis of Short Pier Shear Wall With Concealed Bracings by Using Diagonal Bracing Frame Model[J]. Journal of Beijing University of Technology, 2008, 34(5): 481-486. |
[10] | CAO Wanlin, DONG Hongying, LIU Chunyan, ZHANG Jianwei, SHI Yilei. Comparison of the Aseismic Behaviors of R.C. Frame with Bracings and the shear wan with Hidden. Bracings[J]. Journal of Beijing University of Technology, 2001, 27(1): 43-45. |