• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
YAO Li, ZHANG Ai-lin, YANG Hai-jun. Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains[J]. Journal of Beijing University of Technology, 2011, 37(3): 368-374.
Citation: YAO Li, ZHANG Ai-lin, YANG Hai-jun. Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains[J]. Journal of Beijing University of Technology, 2011, 37(3): 368-374.

Discretion Variable Optimization Design of Prestressed Steel Truss With Stress Constrains

More Information
  • Received Date: March 28, 2009
  • Available Online: November 18, 2022
  • It is discussed the optimization design of prestressed cable supported steel truss with its design variables including continuous cables' pretension force and discrete cross section size.A optimization mathematical model is established in such a form that the member's stress and structural mass are constrain conditions and the minimum structural strain energy is the objective function.The cables' pretension force can be determined by minimizing all member bars strain energy when prestress and external load apply together.Each member's relative difference quotient which mass variations divide energy variations caused by the member's size change is calculated to determine searching direction.Evolutionary structural optimization is adopt to modify member cross section size gradually untill cables' pretension force and members' cross section size reach optimal by iteration.Result of examples in the paper coincides with that of prestress steel structures theory,the method in this paper can provide optimum cables' pretension force and formed steel for the prestressed steel structure design.
  • [1]
    陆赐麟,尹思明,刘锡良.现代预应力钢结构(修订版)[M].北京:人民交通出版社,2006:20-26.
    [2]
    杨海军,张爱林.多索预应力桁架结构优化设计[J].建筑结构,2007,37(8):94-96.YANG Hai-jun,ZHANG Ai-lin.Optimization design of prestressed truss structures with multiple cables[J].Buildingstructure,2007,37(8):94-96.(in Chinese)
    [3]
    张爱林,杨海军.预应力索-桁架结构形状优化设计[J].计算力学学报,2007,24(1):91-97.ZHANG Ai-lin,YANG Hai-jun.Shape optimization design of prestressed cable-truss structures[J].Chinese Journal ofComputational Mechanics,2007,24(1):91-97.(in Chinese)
    [4]
    吴杰,张其林.基于混合变量的张弦梁结构优化设计研究[J].四川建筑科学研究,2006,32(2):9-11.WU Jie,ZHANG Qi-lin.Research for optimum design of beam string structures based on hybrid variable[J].SichuanBuilding Science,2006,32(2):9-11.(in Chinese)
    [5]
    王连广,侯献语,冯刚.基于遗传算法的预应力钢桁架优化设计[J].沈阳建筑大学学报:自然科学版,2006,22(4):567-570.WANG Lian-guang,HOU Xian-yu,FENG Gan.Optimization design of pre-stressed steel trusses using a genetic algorithm[J].Journal of Shenyang Jianzhu University:Natural Science,2006,22(4):567-570.(in Chinese)
    [6]
    郭鹏飞,韩英仕,魏英姿.离散变量结构优化的拟满应力设计方法[J].工程力学,2000,17(1):94-98.GUO Peng-fei,HAN Ying-shi,WEI Ying-zi.An imitation full-stress design method for structural optimization with discretevariables[J].Engineering Mechanics,2000,17(1):94-98.(in Chinese)
    [7]
    CARSTEN EBENAU,JENS ROTTSCHFER,GEORG THIERAUF.An advanced evolutionary strategy with an adaptivepenalty function for mixed-discrete structural optimization[J].Advances in Engineering Software,2005,36(1):29–38.
    [8]
    柴山,王健,曹新忠.离散变量优化设计的方向差商法[J].计算力学学报,1994,11(3):283-293.CHAI Shan,WANG Jian,CAO Xin-zhong.A direction-difference-quotient method of the optimal design of discrete variable[J].Chinese Journal of Computational Mechanics,1994,11(3):283-293.(in Chinese)
    [9]
    曾国华,董聪.离散变量结构优化设计的最优综合效能法[J].工程力学,2008,25(9):106-110.ZENG Guo-hua,DONG Cong.Optimum synthetic effectiveness method for structural optimization with discrete variables[J].Engineering Mechanics,2008,25(9):106-110.(in Chinese)
    [10]
    EYSA SALAJEGHEH,JAVSD SALAJEGHEH.Optimum design of structures with discrete variables using higher orderapproximation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(13-14):1395-1419.
    [11]
    CAI Jianbo,GEORG THIERAUF.Evolution strategies for solving discrete optimization problems[J].Advances inEngineering Software,1996,25(2-3):177-183.
  • Related Articles

    [1]RUAN Xiaogang. Response to On "Observational Relativity"[J]. Journal of Beijing University of Technology, 2020, 46(7): 825-850. DOI: 10.11936/bjutxb2020030022
    [2]WANG Lingjun. On "Observational Relativity"[J]. Journal of Beijing University of Technology, 2020, 46(7): 814-824, 850. DOI: 10.11936/bjutxb2020030021
    [3]SUI Yunkang, TIE Jun. High Order Difference Quotient Formulas of Multivariate Functions[J]. Journal of Beijing University of Technology, 2019, 45(11): 1077-1081. DOI: 10.11936/bjutxb2019050010
    [4]MA Chao-yong, LIU Qian, DUAN Jian-min. Fault Diagnosis Method of Rolling Bearings Based on LMD and Singular Value Difference Spectrum[J]. Journal of Beijing University of Technology, 2014, 40(2): 182-188.
    [5]YANG Hai-jun, ZHANG Ai-lin, YAO Li. Topology Optimization Design of Prestressed Cable-truss Structures[J]. Journal of Beijing University of Technology, 2011, 37(9): 1360-1366.
    [6]YANG Hai-jun, ZHANG Ai-lin. Topology Optimization Design of Prestressed Steel Structures Based on Von Mises Stress[J]. Journal of Beijing University of Technology, 2010, 36(4): 475-481.
    [7]WANG Lei, ZHOU Yu-wen, WANG Ming-ming. Study on the Storage Calculation of Stormwater Detention Using Finite Difference[J]. Journal of Beijing University of Technology, 2010, 36(2): 206-212.
    [8]LIU Jian-jun, ZHAI Li-xue. Using the Finite Difference Method to Solve the Energy Eigenvalue Equation[J]. Journal of Beijing University of Technology, 2008, 34(3): 325-331.
    [9]LI Yong-mei, ZHANG Yi-gang. A 2-level Optimization Structural Design Algorithm on Discrete Variables[J]. Journal of Beijing University of Technology, 2006, 32(10): 883-889.
    [10]MA Long-you, SHOU Yu-ting, LIU Zhang-he, ZHANG Yan, LIU Shi-xiang. Asymptotic Property of the Middle Point of n-th Order Difference[J]. Journal of Beijing University of Technology, 2003, 29(1): 73-78.

Catalog

    Article views (6) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return