• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
YANG Qian. Improvement of the Improved BP Neural Network Forecast Method and its Application in Long-term Settlement of the Tunnel[J]. Journal of Beijing University of Technology, 2011, 37(1): 92-97.
Citation: YANG Qian. Improvement of the Improved BP Neural Network Forecast Method and its Application in Long-term Settlement of the Tunnel[J]. Journal of Beijing University of Technology, 2011, 37(1): 92-97.

Improvement of the Improved BP Neural Network Forecast Method and its Application in Long-term Settlement of the Tunnel

More Information
  • Received Date: May 09, 2009
  • Available Online: November 18, 2022
  • In this paper,the existing BP neural network forecasting method is first improved.The made improvements include that: The best training mode of network and transfer function are got by contrastive analysis;For the BP neural network with only one output neuron,the explicit expression of the number of neuron in hidden layer is derived by using repeated training and statistical theory;A normalization approach,best normalized interval and range of neuron in hidden layer are proposed;When the number of input neurons exceeds 3,it is showed that the prediction effect of BP neural network with double hidden layers is superior to that of the network with one output neuron.Based on the improved BP neural network,the settlement of the whole tunnel structure is forecasted and the results is satisfying,which is very useful for choosing the follow-up construction technology.
  • [1]
    汤梅芳,王炳龙.BP神经网络在悬浮桩复合地基沉降预测中的应用[J].华东交通大学学报,2006,23(2):17-18.TANG Mei-fang,WANG Bing-long.BP nervous network applied to prediction of settlement in hanging pile composite ground[J].Journal of East China Jiaotong University,2006,23(2):17-18.(in Chinese)
    [2]
    王志亮,许可.高速公路沉降预测神经网络法应用研究[J].低温建筑技术,2004(1):37-38.WANG Zhi-liang,XU Ke.Study on application of neural network method in settlement predication of highway[J].LowTemperature Architecture Technology,2004(1):37-38.(in Chinese)
    [3]
    安宁.基于BP神经网络的黄土湿陷性预测研究[J].路基工程,2009(1):72-73.AN Ning.Research on forecasting loess collapsibility based on BP artificial neural network[J].Subgrade Engineering,2009(1):72-73.(in Chinese)
    [4]
    於永和,李素艳.基于L-M法BP神经网络的高填路堤地基沉降预测[J].交通标准化,2006,158(10):169-170.YU Yong-he,LI Su-yan.Foundation settlement prediction based on BP neural networks by L-M method for high-filledembankment[J].Communications Standardization,2006,158(10):167-170.(in Chinese)
    [5]
    贺明侠,王连俊.动量BP算法在路基沉降预测中的应用[J].岩土工程技术,2006,20(1):18-19.HE Ming-xia,WANG Lian-jun.Momentum Backpropagation for the Settlement Prediction of Subgrade Construction[J].Geotechnical Engineering Technique,2006,20(1):18-19.(in Chinese)
    [6]
    刘红兵,王李管,张良辉,等.基于人工神经网络技术的隧道地表沉降预测[J].矿业研究与开发,2007,27(2):26-28.LIU Hong-bing,WANG Li-guan,ZHANG Liang-hui,et al.Prediction of tunneling-induced ground subsidence with artificialneural network[J].Mining Research and Development,2007,27(2):26-28.(in Chinese)
    [7]
    璩继立,峁会勇.盾构施工地面长期沉降的神经网络预测[J].上海地质,2004,91(3):42-46.QU Ji-li,MAO Hui-yong.Artificial neural network prediction of surface long-term settlement induced by shield construction[J].Shanghai Geology,2004,91(3):42-46.(in Chinese)
    [8]
    孙崎峰,周栩,孙晓峰.基于改进BP神经网络的公路旅游客流量预测[J].山东理工大学学报:自然科学版,2008,22(6):75-79.SUN Qi-feng,ZHOU Xu,SUN Xiao-feng.High way traveling passenger volume forecast based on improved BP neural network[J].Journal of Shandong University of Technology:Science and Technology,2008,22(6):75-79.(in Chinese)
  • Related Articles

    [1]YANG Chunlan, ZHANG Wenxiu, LI Zhimei, REN Jiechuan. Classification of Temporal Lobe Epilepsy Based on Radiomic Features of Hippocampal Subregions[J]. Journal of Beijing University of Technology, 2023, 49(5): 566-576. DOI: 10.11936/bjutxb2021120008
    [2]YANG Chunlan, ZHANG Yining, LI Zhimei, REN Jiechuan. White Matter Integrity in Temporal Lobe Epilepsy Patients Based on Diffusion Tensor Imaging[J]. Journal of Beijing University of Technology, 2022, 48(1): 85-94. DOI: 10.11936/bjutxb2020110027
    [3]YANG Chunlan, ZHANG Yining, REN Jiechuan. Review of Study on Cognitive Function for Temporal Lobe Epilepsy Patients Using Diffusion Tensor Imaging[J]. Journal of Beijing University of Technology, 2021, 47(1): 76-84. DOI: 10.11936/bjutxb2019040019
    [4]ZHUANG Biying, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Research and Application Progress of Electrochromic Materials[J]. Journal of Beijing University of Technology, 2020, 46(10): 1091-1102. DOI: 10.11936/bjutxb2020030019
    [5]LIN Lan, ZHANG Baiwen, JIN Cong, WU Shuicai. Selection of Parcellation Atlas in DTI Brain Connectome Analysis[J]. Journal of Beijing University of Technology, 2018, 44(4): 617-626. DOI: 10.11936/bjutxb2017020037
    [6]LI Huaizhou, ZHONG Ning, YANG Yang, ZHOU Haiyan, YANG Xiaojing, GUO Jialiang, MA Xiaomeng. Atlas-based Analysis of Association Between Cerebral White Matter Fiber Tracts and Arithmetic Ability[J]. Journal of Beijing University of Technology, 2016, 42(10): 1565-1571. DOI: 10.11936/bjutxb2015120074
    [7]WANG Yi, XIE Kun, ZHOU Yan-juan, CUI Wen-chao, LEI Tao, FAN Yang-yu. Graph Cut Based Algorithm for Corpus Callosum Segmentation From Diffusion Tensor Images[J]. Journal of Beijing University of Technology, 2014, 40(3): 473-480.
    [8]LIU De-zhong, FEI Ren-yuan, LI Jian-feng, GAO Xue-jin, GAN Hong-ren. Development of Magnetostrictive Micro-actuator[J]. Journal of Beijing University of Technology, 2002, 28(4): 405-408.
    [9]Li Qiang, Lei Hong, Zuo Tiechuan. High Power Laser Beam/Focus Diagnostic Instrument Using DS80C320[J]. Journal of Beijing University of Technology, 2000, 26(4): 63-66.
    [10]Jiang Shaolin, Liang Wei, Hua Baoying, Chen Gang. The Rotational Correction of Brillouin Scattering Tensor[J]. Journal of Beijing University of Technology, 1995, 21(3): 33-37.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (13) PDF downloads (6) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return