Processing math: 100%
    • 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120.
Citation: HOU Bo, YANG Shi-lin. A Presentation of Generalized Path Algebras[J]. Journal of Beijing University of Technology, 2011, 37(7): 1116-1120.

A Presentation of Generalized Path Algebras

More Information
  • Received Date: September 12, 2009
  • Available Online: November 18, 2022
  • Suppose that K is algebraically closed,Δ=(Δ01) a finite quiver,A={Ai|i∈Δ0} a family of K-algebras with identity.In this note,by constructing a quiver Γ,we show that the generalized path algebra R(Δ,A) is the quotients of path algebra .Therefore,we get some interesting corollaries.
  • [1]
    AUSLANDER M,REITEN I,SMALΦS O.Representation theory of artin algebras[M].Cambridge,Massachusetts,USA:Cambridge University Press,1995:49-78.
    [2]
    ASSEM I,SIMSON D,SKOWRO SKI A.Elements of the representation theory of associative algebras:volume 1[M].Cambridge,Massachusetts,USA:Cambridge University Press,2006:41-68.
    [3]
    WEIBEL C A. An introduction to homological algebra[M]. Cambridge, Massachusetts, USA: Cambridge University Press, 1994: 300- 361.
    [4]
    COELHO F U,LIU S X.Generalized path algebras,interactions between ring theory and repersentations of algebras(Muricia)[C]∥Leture Notes in Pure and Appl Math.Dekker,New York:[s.n.],2000:53-66.
    [5]
    ZHANG S, ZHANG Y Z. Structures and representations of generalized path algebras [J]. Alg Rep Theory, 2007, 10(2): 117-134.
    [6]
    ZHANG S C, ZHANG Y Z, GUO X J. Generalized path algebras and point Hopf algebras[J]. J Math Research & Exposition, 2009, 29(3): 395- 406.
    [7]
    LI F, LIU G X. Generalized path coalgebras and generalized dual Gabriel theorem [J]. Acta Math Sinca: Chinese Series, 2008, 51(5): 853-862.
    [8]
    GABRIEL P. Unzerlegbare darstellungen Ⅰ[J]. Manuscripta Mathematica, 1972, 6(1): 71-103.
    [9]
    RINGEL C M.The preprojective algebra of a quiver,in algebras and modulesⅡ[C]∥CMS Conf Proc.[S.l.]:Amer MathSoc,1998:467-480.

Catalog

    Article views (7) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return