• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZHANG Zhen, YANG Yu-hao. Distinguishing Computer Graphics From Natural Image Based on Benford Model[J]. Journal of Beijing University of Technology, 2013, 39(6): 930-935.
Citation: ZHANG Zhen, YANG Yu-hao. Distinguishing Computer Graphics From Natural Image Based on Benford Model[J]. Journal of Beijing University of Technology, 2013, 39(6): 930-935.

Distinguishing Computer Graphics From Natural Image Based on Benford Model

More Information
  • Received Date: March 07, 2012
  • Available Online: November 02, 2022
  • An improved method with a higher identifying accuracy rate is presented to identify natural images and computer graphics,and the new detection scheme of computer graphics and natural images is based on the Benford model.This algorithm separately calculates the three RGB color channels by probability distribution of the first significant digit of AC coefficient in discrete cosine transform(DCT) domain and correctly classifies the two types of images based on fitting degree of the three curves.Experimental results show that this method can effectively identify natural images and computer graphics.Compared with the existing algorithms,this algorithm has a higher recognition rate,which makes calculation less and easier to implement,and the identifying accuracy rate comes to 97.17%.This provides credible supports for some relative domains such as image forensics and digital anti-fake identification.
  • [1]
    陈香苹,李生红,苏波,等.基于图像噪声分析的计算机生成图像检测算法[J].光电子.激光,2010,21(2):293-297.CHEN Xiang-ping,LI Sheng-hong,SU Bo,et al.Identifying computer generated images based on analysis ofimage noise[J].Journal of Optoelectronics.Laser,2010,21(2):293-297.(in Chinese)
    [2]
    LYU S,FARID H.How realistic is photorealistic[J].IEEE Transactions on Signal Processing,2005,53(2):845-850.
    [3]
    CHEN W,SHI Y Q,XUAN G.Identifying computergraphics using HSV color model and statistical moments ofcharacteristic functions[C]∥IEEE InternationalConference on Multimedia and Expo,Beijing,July 2-5,2007:1123-1126.
    [4]
    DEHNIE S,SENCAR T H.Digital image forensics foridentifying computer generated and digital camera images[C]∥IEEE International Conference on ImageProcessing,Atlanta,October 8-11,2006:2313-2316.
    [5]
    NG T T,CHANG S F,HSU J,et al.Physics-motivatedfeatures for distinguishing photographic images andcomputer graphics[C]∥Proceedings of the 13th annualACM international conference on Multimedia,Singapore,November 6-11,2005:239-248.
    [6]
    王玉平,李生红,赵峰,等.基于AdaBoost的计算机生成图像检测算法[J].计算机仿真,2008,21(2):293-297.WANG Yu-ping,LI Sheng-hong,ZHAO Feng,et al.Detection of photorealistic computer graphic based onadaboost[J].Computer Simulation,2008,21(2):293-297.(in Chinese)
    [7]
    王学良,李生红,金波,等.一种用于计算机生成图像与自然图像鉴别的改进方法[J].光电子.激光,2010,21(5):783-785.WANG Xue-liang,LI Sheng-hong,JIN Bo,et al.Animproved method of identifying computer graphics andphotographic images[J].Journal of Optoelectronics.Laser,2010,21(5):783-785.(in Chinese)
    [8]
    李文祥,张涛,郑二功,等.基于二阶差分统计量的自然图像与计算机图形的鉴别[J].计算机辅助设计与图形学学报,2010,22(9):195-200.LI Wen-xiang,ZHANG Tao,ZHENG Er-gong,et al.Discrimination between natural images and photo realisticcomputer graphics using second-order difference statistics[J].Journal of Computer-Aided Design&ComputerGraphics,2010,22(9):195-200.(in Chinese)
    [9]
    狄为,施鹏仙.基于Benford定律的会计舞弊发现研究[J].会计之友,2010(9):73-75.DI Wei,SHI Peng-xian.The research of accounting fraudsbased on benford model[J].Friends of Accounting,2010(9):73-75.(in Chinese)
    [10]
    许涤龙,金瑛.基于Benford法则的M2统计数据准确性研究[J].统计与信息论坛,2010,25(8):20-24.XU Di-long,JIN Ying.Research on accuracy of M2 databased on benford's law[J].Statistics&InformationForum,2010,25(8):20-24.(in Chinese)
    [11]
    PREZ G F,HEILEMAN G,ABDALLAH C T.Ageneralization of benford's law and its application toimages[C]∥IEEE International Conference on ImageProcessing,San Antonio,September 16-October 19,2007:405-408
    [12]
    ZHAO X,HO A T,SHI Y Q.Image forensics usinggeneralised benford's law for accurate detection ofunknown JPEG compression in watermarked images[C]∥16th International Conference on Digital SignalProcessing,Santorini,Greece,July 5-7,2009:1-8.
    [13]
    WANG J W,CHA B H,CHO S H,et al.Understandingbenford's law and its vulnerability in image forensics[C]∥In Proceedings of ICME,New York,June 28-July 3,2009:1568-1571.
    [14]
    QADIR G,ZHAO X,HO A T,et al.EstimatingJPEG2000 compression for image forensics using benford'slaw[C]∥Proceedings of SPIE,Brussels,April 12-15,2010:77230J-1-77230J-10.
    [15]
    QADIR G,ZHAO X,HO A T,et al.Image forensic ofglare feature for improving image retrieval using benford'slaw[C]∥IEEE International Symposium on Circuits andSystems,Rio de Janeiro,May 15-18,2011:2661-2664.
    [16]
    王丽娜,郭迟,李鹏.信息隐藏技术实验教程[M].武汉:武汉大学出版社,2004:80-100.
    [17]
    赵珊,赵倩.基于DCT系数的JPEG图像检索算法[J].计算机工程,2010,36(19):190-192.ZHAO Shan,ZHAO Qian.JPEG image retrievalalgorithm based on DCT coefficient[J].ComputerEngineering,2010,36(19):190-192.(in Chinese)
    [18]
    FU D,SHI Y Q,SU Q.A generalized benford's law forJPEG coefficients and its applications in image forensics[C]∥SPIE Electronic Imaging,San Jose,January 28-February 1,2007:1L1-1L11.
    [19]
    周琳娜,王东明.数字图像取证技术[M].北京:北京邮电大学出版社,2008:18-181.
    [20]
    Columbia DVMM Research Lab.Columbia photographicimages and photorealistic computer graphics dataset[DB/OL].[2012-02-10].http:∥www.ee.columbia.edu/ln/dvmm/downloads/P IM_PRCG_dataset/.
    [21]
    于洋.数码照片和计算机生成图像的图像源鉴别[D].大连:大连理工大学电子信息与电气工程学部,2007.YU Yang.Classification for computer graphic images andnatural photographs[D].Dalian:Faculty of ElectronicInformation and Electrical Engineering,Dalian Universityof Technology,2007.(in Chinese)
  • Related Articles

    [1]SHAO Changqiao, GUO Jie, LIU Xaioming. Methodology of Parameter Calibration for Macroscopic Traffic Flow Models[J]. Journal of Beijing University of Technology, 2022, 48(12): 1298-1306. DOI: 10.11936/bjutxb2021110029
    [2]SHAO Changqiao, HUANG Qunlong. Traffic Characteristics of Reconstruction and Extension of Expressway Work Zone[J]. Journal of Beijing University of Technology, 2021, 47(9): 1036-1047. DOI: 10.11936/bjutxb2020010004
    [3]SHAO Changqiao, LI Min. Study of Layout of Incident Detectors Based on Traffic Flow and Occupancy Models[J]. Journal of Beijing University of Technology, 2016, 42(9): 1392-1397. DOI: 10.11936/bjutxb2015110053
    [4]LI Qiao-ru, ZHAO Rong, CHEN Liang. Short-term Traffic Flow Forecasting Model Based on SVM and Adaptive Spatio-Temporal Data Fusion[J]. Journal of Beijing University of Technology, 2015, 41(4): 597-602. DOI: 10.11936/bjutxb2014050068
    [5]LI Peng-fei, LIU Xiao-ming, SHI Jian-jun. Traffic Wave Model for a Variety of Traffic Flow State[J]. Journal of Beijing University of Technology, 2014, 40(11): 1680-1686.
    [6]ZHONG Lian-de, SUN Xiao-duan. Relationship Between Traffic Flow and Safety on Freeway[J]. Journal of Beijing University of Technology, 2013, 39(2): 251-256.
    [7]SHEN Xuan-jing, HE Yue, ZHANG Bo, LONG Jian-wu. FCM With Spatial Information and Membership Constrains for Image Segmentation[J]. Journal of Beijing University of Technology, 2012, 38(7): 1073-1078.
    [8]YANG Yong-qin, LIU Xiao-ming, YU Quan, CHU Shi-xin. Research on Three Traffic Flow Parameters[J]. Journal of Beijing University of Technology, 2006, 32(1): 43-47.
    [9]GUAN Hongzhi, CHEN Yanyan, LIU Xiaoming, REN Futian. An Analysis Model for Mixed Traffic Flow on Street[J]. Journal of Beijing University of Technology, 2001, 27(1): 12-15.
    [10]Liu Lanhui, Guan Hongzhi. Mixed Traffic Flow Model and Its Application[J]. Journal of Beijing University of Technology, 2000, 26(z1): 46-49.

Catalog

    Article views (20) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return