• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
YU Hui-ping, SUI Yun-kang, AN Guo-ping. Numerical Simulation of Large Diameter Czochralski Crystal Silicon With a Vertical Magnetic Field[J]. Journal of Beijing University of Technology, 2006, 32(S1): 68-73.
Citation: YU Hui-ping, SUI Yun-kang, AN Guo-ping. Numerical Simulation of Large Diameter Czochralski Crystal Silicon With a Vertical Magnetic Field[J]. Journal of Beijing University of Technology, 2006, 32(S1): 68-73.

Numerical Simulation of Large Diameter Czochralski Crystal Silicon With a Vertical Magnetic Field

More Information
  • Received Date: May 09, 2006
  • Available Online: December 29, 2022
  • It is known that the shape of the growth interface, the temperature, oxygen concentration distribution are sensitive to the magnetic field strength. In this paper, a low Reynolds number model was used for the simulation of a 200 mm large diameter silicon crystal growth under a vertical magnetic field with different strength, the Hartmann number is equal to 0, 500, 1000 and 2000 respectively. Numerical results showed that a vertical magnetic field can effectively reduce the strength of the flow at the radial orientation; and can reduce the flow at the meridian plane; the oxygen concentration is also decreased at the axial orientation. The isotherm becomes flat. However, when the vertical magnetic field strength is too higher, the oxygen concentration at the axial orientation and the turbulence intensity increased.
  • [1]
    蒋荣华,肖顺珍.半导体硅材料最新发展现状[J].半导体技术,2002,27(2):3—6.JIANG Rong-hua, XIAO Shun-zhen. Development and trend of semiconductor Si material[J]. Semiconductor Technology, 2002, 27(2): 3-6. (in Chinese)
    [2]
    ZHANG T, LADEINDE F, PRASAD V, Turbulent convection in a czochralski silicon melt[J]. Journal of Heat Transfer, 1999, 121: 1027-1041.
    [3]
    HIRATA H. Three dimensional numerical analyses of the effects of a cusp magnetic field on the flows, oxygen transport and heat transfer in a czochralski silicon melt[J]. Journal of Crystal Growth, 1992, 125: 181-207.
    [4]
    LI Y R, AKIYAMA Y, IMAISHI N, et al. Global analysis of a small czochralski furnace with rotating crystal and crucible [J]. Journal of Crystal Growth, 2003, 255: 81-92.
    [5]
    GRABNER O, MuLLER G, VIRBULIS J, et al. Effects of various magnetic field configurations on temperature distributions in Czochralski silicon melts[J]. Microelectronic Engineering, 2001, 56(1-2): 83-88.
    [6]
    张果虎,吴志强,方峰,等.300 mm硅单晶的生长技术[J].半导体学报,2001,22(3):383-386.ZHANG Guo-hu, WU Zhi-qiang, FANG Feng, et al. 300 mm crystal silicon's growth technology[J]. Chinese Journal of Semiconductors, 2001, 22(3): 383-386. (in Chinese)
    [7]
    王学锋,翟立君,周旗钢,等.大直径直拉硅单晶炉热场的数值模拟[J].稀有金属,2004,28(5):890—893.WANG Xue-feng, ZHAI Li-jun, ZHOU Qi-gang, et al. Numerical simulation of thermal field in a large diameter CZ-Si single crystal furnace [J]. Chinese Journal of Rare Metals, 2004, 28(5): 890-893.
    [8]
    REN B Y, ZHANG Z C, LIU C C, et al. Study of relationship between temperature distributions [J]. Chinese Science Ab-stract,2000,6:1028—1030.
    [9]
    王英伟,刘景和,程灏波,等.勾形磁场中直拉硅单晶浓度场的数值模拟研究[J].硅酸盐学报,2005,33(2):133-139.WANG Ying-wei, LIU Jing-he, CHENG Hao-bo. Numerical simulation of concentration field during the growth of single crystal Si in a cusp magnetic field [J]. Journal of the Chinese Ceramic Society, 2005, 33(2): 133-139. (in Chinese)
    [10]
    李友荣,阮登芳,彭岚,等.硅单晶Czochralski法生长全局数值模拟Ⅰ.传热与流动特性[J].材料研究学报,2004, 18(2):212—218.LI You-rong, RUAN Deng-fang, PENG Lan, et al. Global simulation of silicon crystal Czochralski growthⅠ. Characteristics of heat transfer and fluid flow[J]. Chinese Journal of Materials Research, 2004, 18(2): 212-218. (in Chinese)
    [11]
    李友荣,阮登芳,彭岚,等.硅单晶Czochralski法生长全局数值模拟Ⅱ.质量传递特性[J].材料研究学报,2004,18 (2):219-224.LI You-rong, RUAN Deng-fang, PENG Lan, et al. Global simulation of silicon crystal Czochralski growthⅡ. Characteristics of mass transfer[J]. Chinese Journal of Materials Research, 2004, 18(2): 219-224. (in Chinese)
    [12]
    ILIEV K, BERKOWSKI M, PIEKARCZYK W. Conditions of existence and character of the temperature fluctuations during Czochralski growth of oxide single crystals [J]. Journal of Crystal Growth, 1991, 108: 219-224.
    [13]
    ZHANG T, LADEINDE F, ZHANG H. A comparison of turbulence models for natural convection in enclosures applications to crystal growth processes. Proc. 31st National Heat Transfer Conf, HTD, 1996: 17-26.
    [14]
    RISTORCELLI J R, LUMLEY J L. Asecond order turbulence simulation of the Czochralski crystal growth melt: the buoyantly driven flow[J]. Journal of Crystal Growth, 1993, 129: 249-265.
    [15]
    LIPCHIN A, BROWN R A. Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon[J]. Journal of Crystal Growth, 1999, 205: 71-91.

Catalog

    Article views (50) PDF downloads (39) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return