• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Song-gui, SHI Jian-hong. Statistical Models for Geometric Feature Test of Mechanical Products[J]. Journal of Beijing University of Technology, 2004, 30(2): 230-234. DOI: 10.3969/j.issn.0254-0037.2004.02.023
Citation: WANG Song-gui, SHI Jian-hong. Statistical Models for Geometric Feature Test of Mechanical Products[J]. Journal of Beijing University of Technology, 2004, 30(2): 230-234. DOI: 10.3969/j.issn.0254-0037.2004.02.023

Statistical Models for Geometric Feature Test of Mechanical Products

More Information
  • Received Date: November 16, 2003
  • Available Online: November 02, 2022
  • In order to test the geometric features of mechanical products using the coodinate measuring apparatus, it is necessary to establish reasonable mathematical model. The authors emphasize the introduction about the latest development in processing the measured data of circular and spheric parts by means of statistical model and make the comparison among the several kinds of models. Some theoretical results have been applied to the field of microwave engineering, oil industry and archeology.
  • [1]
    DOWLING M M, GRIFFIN P M, TSUI K L, et al. Statistical issues in geometric feature inspection usingcoordinate measuring machines[J]. Technometrics, 1997, 39(1) : 3-24.
    [2]
    GRIFFIN P M, MESSIMER S L. Object pose determination from range data[J]. Comput Indust Engng, 1992,22: 245-256.
    [3]
    GANDER N, GOLUB G H, STREBEL R. Fitting of circles and ellipses: Least square solution[J]. BIT, 1994,34(2) : 556-577.
    [4]
    HULTING F L. Methods for the analysis of coordinate measurement data[J]. Comput Sci Statist, 1992, 24:160-169.
    [5]
    WATSON G A. Least squares fitting of circles and ellipses to measured data[J]. BIT, 1999, 39(1) : 176-191.
    [6]
    ANDERSON D A. The circular structual model[J]. J R Statist Soc B, 1981, 43: 131-141.
    [7]
    BERMAN M, CULPIN D. The statistical behaviour of some least squares estimators of the centre and radius ofa circle[J]. J R Statist Soc B, 1986, 48(2) : 183-196.
    [8]
    CHAN N N. On circular functional relationships[J]. J R Statist Soc B, 1965, 27: 45-56.
    [9]
    FANG K T, WANG S G, WEI G. A stratified sampling model in spherical feature inspection using coordinatemeasuring machines[J]. Statistics & Probability Letters, 2001, 51: 25-34.
    [10]
    WANG C M, LAM C T. A mixed-effects model for the analysis of circular measurements[J]. Technometrics,1997, 39(2) : 119-126.
    [11]
    WANG S G, FANG K T, WEI G. Efficient of feasible weighted least squares estimators of the center andradius of spherical surface[R]. Technical Report, 1999, MATH-214. Hong Kong: Department of Mathematics ofHong Kong Baptist University, 1999.
    [12]
    WANG S G, FANG K T, ROSEN D. New estimates of the parameters of circular features by mixed-effectsmodels[R]. Technical Report, MATH-328. Hong Kong: Department of Mathematics of Hong Kong BaptistUniversity, 2002.
    [13]
    王松桂,尹素菊.线性混合模型参数的一种新估计[J].中国科学,2002,32(5) :434-443.

    WANG Song-gui, YIN Su-ju. A new estimate of the parameters in linear mixed model[J]. Science in China, 2002, 32(5) : 434-443.
    [14]
    WU H. Optimal exact design on a circle or a circular arc[J]. Ann Statist, 1997, 25(5) : 2020-2043.
    [15]
    王松桂,史建红,尹素菊,等.线性模型引论[M].北京:科学出版社,2004. WANG Song-gui, SHI Jian-hong, YIN Su-ju, et al. Introduction to Linear Model[M]. Beijing: Science Press, 2004. (in Chinese)
    [16]
    陈希孺,王松桂.线性模型中的最小二乘法[M].上海:上海科技出版社,2003. CHEN Xi-ru, WANG Song-gui. Least Square Method in Linear Models[M]. Shanghai: Shanghai Science and Technology Press, 2003. (in Chinese)

Catalog

    Article views (12) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return