• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CHEN Jia-lei, YANG Shi-lin. Restricted Forms of Quantum Supergroups OqGL(1|1))′[J]. Journal of Beijing University of Technology, 2012, 38(3): 473-475.
Citation: CHEN Jia-lei, YANG Shi-lin. Restricted Forms of Quantum Supergroups OqGL(1|1))′[J]. Journal of Beijing University of Technology, 2012, 38(3): 473-475.

Restricted Forms of Quantum Supergroups OqGL(1|1))′

More Information
  • Received Date: June 12, 2010
  • Available Online: November 02, 2022
  • Let q be a primitive l-th root of unity.This paper constructs finite dimensional Hopf superalgebra OqGL (1|1|1) ) ′, describes its basis via Diamond Lemma, and explicitly writes out the left and right integral.
  • [1]
    MANIN YU I. Multiparametric quantum deformation of the general linear supergroup [J]. Comm Math Phys, 1989, 123 (1) : 163-175.
    [2]
    MANIN YU I. Topics in noncommutative geometry[M]. Princeton, NJ, USA: Princeton Univ Press, 1991: 1-163.
    [3]
    LYUBASHENKO V, SUDBERY A. Quantum supergroups of GL (m|n) type: Diffential forms, Koszul complex and Berezinians [J]. Duke Math J, 1997, 90: 1- 62.
    [4]
    PHUNG H H. On the structure of quantum super groups GLq (m|n) [J]. J Algebra, 1999, 211 (2) : 363- 383.
    [5]
    FIORESI R. On algebraic supergroups and quantum deformations [J]. J Algebra Appl, 2003, 2 (4) : 403- 423.
    [6]
    FIORESI R. Supergroups, quantum supergroups and their homogeneous spaces [J]. Modern Physics Letters A, 2001, 16 (4/5/6) : 169- 274.
    [7]
    ZHANG He-chun, ZHANG Rui-bin. Dual canonical bases for the quantum general linear supergroup[J]. J Algebra, 2006, 304 (2) : 1026-1058.
    [8]
    BROWN K A, GOODEARL K R.Lectures on algebraicquantum groups[M].Basel, SwitzerLand:Birkhuser, 2002:97-99.
  • Related Articles

    [1]LI Jing, YUAN Xing, ZHANG Li-na. Further Reduction of Nilpotent Three-dimensional Vector Fields' Normal Form Using First Integral[J]. Journal of Beijing University of Technology, 2012, 38(11): 1745-1748.
    [2]YUAN Xiao-bin, DU Juan, LIU Yong-jie, ZHAO Xiao. A New Universal Algorithm Based on Integral Quardrature for Dynamic Response[J]. Journal of Beijing University of Technology, 2011, 37(9): 1372-1376.
    [3]LI Rui-jie, LI Zi-ping. Quantum Poincaré-Cartan Integral Invariant for Singular System[J]. Journal of Beijing University of Technology, 2007, 33(4): 437-440.
    [4]ZHAO Xiao-hua, CAO Lei, CHEN Mei-lian, SUN Liang. Analysis on Compensation of Control System of Nonlinear Integrator[J]. Journal of Beijing University of Technology, 2002, 28(2): 138-141.
    [5]LI Rui-jie, LI Zi-ping. On Quantal Poincaré-Cartan Integral Invariant[J]. Journal of Beijing University of Technology, 2001, 27(2): 187-190,201.
    [6]Gao Haixiao, Li Ziping. Noether Theorem and Poincaré-Cartan Integral Invariant in Quantum Case for a Constrained Hamilton System[J]. Journal of Beijing University of Technology, 1997, 23(4): 1-7.
    [7]Li Ziping. Canonical Symmetries and Conserved Quantities in the Quantization of Functional Integral[J]. Journal of Beijing University of Technology, 1997, 23(3): 1-5.
    [8]Li Ziping, Tang Taiming. Global Canonical Symmetry in the Functional Integral Formalism[J]. Journal of Beijing University of Technology, 1996, 22(2): 1-9.
    [9]Li Ziping. Canonical Symmetries in Functional Integral Expression for Field Theories[J]. Journal of Beijing University of Technology, 1993, 19(4): 1-11.
    [10]Wang Jianding. Integral Form of Semi-analytic Function[J]. Journal of Beijing University of Technology, 1991, 17(4): 18-20.

Catalog

    Article views (21) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return