Citation: | CHEN Jia-lei, YANG Shi-lin. Restricted Forms of Quantum Supergroups Oq(GL(1|1))′[J]. Journal of Beijing University of Technology, 2012, 38(3): 473-475. |
[1] |
MANIN YU I. Multiparametric quantum deformation of the general linear supergroup [J]. Comm Math Phys, 1989, 123 (1) : 163-175.
|
[2] |
MANIN YU I. Topics in noncommutative geometry[M]. Princeton, NJ, USA: Princeton Univ Press, 1991: 1-163.
|
[3] |
LYUBASHENKO V, SUDBERY A. Quantum supergroups of GL (m|n) type: Diffential forms, Koszul complex and Berezinians [J]. Duke Math J, 1997, 90: 1- 62.
|
[4] |
PHUNG H H. On the structure of quantum super groups GLq (m|n) [J]. J Algebra, 1999, 211 (2) : 363- 383.
|
[5] |
FIORESI R. On algebraic supergroups and quantum deformations [J]. J Algebra Appl, 2003, 2 (4) : 403- 423.
|
[6] |
FIORESI R. Supergroups, quantum supergroups and their homogeneous spaces [J]. Modern Physics Letters A, 2001, 16 (4/5/6) : 169- 274.
|
[7] |
ZHANG He-chun, ZHANG Rui-bin. Dual canonical bases for the quantum general linear supergroup[J]. J Algebra, 2006, 304 (2) : 1026-1058.
|
[8] |
BROWN K A, GOODEARL K R.Lectures on algebraicquantum groups[M].Basel, SwitzerLand:Birkhuser, 2002:97-99.
|
[1] | LI Jing, YUAN Xing, ZHANG Li-na. Further Reduction of Nilpotent Three-dimensional Vector Fields' Normal Form Using First Integral[J]. Journal of Beijing University of Technology, 2012, 38(11): 1745-1748. |
[2] | YUAN Xiao-bin, DU Juan, LIU Yong-jie, ZHAO Xiao. A New Universal Algorithm Based on Integral Quardrature for Dynamic Response[J]. Journal of Beijing University of Technology, 2011, 37(9): 1372-1376. |
[3] | LI Rui-jie, LI Zi-ping. Quantum Poincaré-Cartan Integral Invariant for Singular System[J]. Journal of Beijing University of Technology, 2007, 33(4): 437-440. |
[4] | ZHAO Xiao-hua, CAO Lei, CHEN Mei-lian, SUN Liang. Analysis on Compensation of Control System of Nonlinear Integrator[J]. Journal of Beijing University of Technology, 2002, 28(2): 138-141. |
[5] | LI Rui-jie, LI Zi-ping. On Quantal Poincaré-Cartan Integral Invariant[J]. Journal of Beijing University of Technology, 2001, 27(2): 187-190,201. |
[6] | Gao Haixiao, Li Ziping. Noether Theorem and Poincaré-Cartan Integral Invariant in Quantum Case for a Constrained Hamilton System[J]. Journal of Beijing University of Technology, 1997, 23(4): 1-7. |
[7] | Li Ziping. Canonical Symmetries and Conserved Quantities in the Quantization of Functional Integral[J]. Journal of Beijing University of Technology, 1997, 23(3): 1-5. |
[8] | Li Ziping, Tang Taiming. Global Canonical Symmetry in the Functional Integral Formalism[J]. Journal of Beijing University of Technology, 1996, 22(2): 1-9. |
[9] | Li Ziping. Canonical Symmetries in Functional Integral Expression for Field Theories[J]. Journal of Beijing University of Technology, 1993, 19(4): 1-11. |
[10] | Wang Jianding. Integral Form of Semi-analytic Function[J]. Journal of Beijing University of Technology, 1991, 17(4): 18-20. |