Citation: | ZHANG Wei, WANG Xiu-yan, YAO Ming-hui. Study on Chaotic Dynamics of Perturbed sine-Gordon Equation[J]. Journal of Beijing University of Technology, 2004, 30(2): 134-138. DOI: 10.3969/j.issn.0254-0037.2004.02.002 |
[1] |
BISHOP R, FOREST M G, McLAUGHLIN D W, et al. A quasi-periodic route to chaos in a near-integrablePDE[J]. Physica D, 1986, 23: 293-328.
|
[2] |
KOVACIC G, WIGGINS S. Orbits homoclinic to resonance, with an application to chaos in a model of theforced and damped sine-Gordon equation[J]. Physica D, 1992, 57: 185-225.
|
[3] |
TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York : Springer-Verlag,1988.
|
[4] |
LIU Z R, XU Z Y, LING G P, et al. Discussion of the dynamical behavior of the sine-Gordon equation[J]. JNonlinear Dynamics in Science and Technology, 1995, 2: 12-30.
|
[5] |
YU P, ZHANG W, BI Q S. Vibration analysis on a thin plate with the aid of computation of normal forms[J].Int J Non-Linear Mech, 2001, 36: 597-627.
|
[6] |
NUSSE H E, YORKE J A. Dynamics: Numerical Explorations[M]. New York: Springer-Verlag, 1997.
|