Citation: | ZHAO Mi, ZHANG Fenglin, HUANG Jingqi, ZHAO Xu, CAO Shengtao, DU Xiuli, XIE Weijie. Numerical Simulation Study on the Dynamic Response Characteristics of Adhesive Steel Reinforced Pipe Joints Under Positive Bending Moments[J]. Journal of Beijing University of Technology, 2024, 50(11): 1326-1338. DOI: 10.11936/bjutxb2023110028 |
To explore the dynamic response characteristics and failure modes of sticky steel-reinforced segment joints under cyclic loading, a refined finite element analysis model for such joints is developed against the backdrop of a practical urban shield tunnel. This study involves simulating the dynamic characteristics of sticky steel-reinforced segment joints under positive bending moments during cyclic loading, and exploring damage evolution features, failure modes, stiffness degradation, hysteresis energy dissipation characteristics, and ductility deformation capabilities. Results show that during the initial loading stage, the steel plates of the reinforced joint can effectively share the tension borne by the bolts, with the initial failure occurring at the bond between the steel plates. Once extensive delamination of the steel plates occurs, the failure process of the reinforced and unreinforced joints tends to be consistent. During the initial loading stage, the reinforced steel plates significantly enhance the stiffness and bending moment of the segment joint. Even after extensive delamination of the steel plates, the bending moment and stiffness of the reinforced joint remain slightly higher than those of the unreinforced joint. Under positive bending moment cyclic loading, the segment joint exhibits cumulative damage characteristics: with an increase in the number of cycles under the same load level, the joint demonstrates a certain degree of load-carrying capacity degradation. In the initial loading stage, due to the cracking failure of the structural adhesive, the energy dissipation capacity of the reinforced joint is noticeably higher than that of the unreinforced joint. During the later loading stages, the energy dissipation capacity of both reinforced and unreinforced joints increases with the increase in the degree of concrete damage, however, the energy dissipation capacity of reinforced joints is still slightly stronger than that of unreinforced pipe sheet joints.
[1] |
林楠, 李攀, 谢雄耀. 盾构隧道结构病害及其机理研究[J]. 地下空间与工程学报, 2015, 11(增刊2): 802-809.
LIN N, LI P, XIE X Y. Research on evolution mechanism of shield tunnel disease based on segment performance analysis[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(Suppl 2): 802-809. (in Chinese)
|
[2] |
CHANG C T, WANG M J, CHANG C T, et al. Repair of displaced shield tunnel of the Taipei rapid transit system[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(3): 167-173.
|
[3] |
柳献, 唐敏, 鲁亮, 等. 内张钢圈加固盾构隧道结构承载能力的试验研究——整环加固法[J]. 岩石力学与工程学报, 2013, 32(11): 2300-2306.
LIU X, TANG M, LU L, et al. Experimental study of ultimate bearing capacity of shield tunnel reinforced by full-ring steel plate[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2300-2306. (in Chinese)
|
[4] |
王如路, 肖同刚, 朱妍. 上海地铁盾构隧道渗漏水治理与变形控制[C]//中国土木工程学会隧道与地下工程分会防水排水专业委员会第十五届学术交流会论文集. 上海: 上海市隧道工程轨道交通设计研究院, 2011: 114-120, 148.
WANG R L, XIAO T G, ZHU Y. Water seepage and leakage management and deformation control of shield tunnel in Shanghai metro[C]//Proceedings of the 15th Symposium of the Waterproofing and Drainage Committee of the Tunneling and Underground Engineering Branch of the Chinese Civil Engineering Society. Shanghai: Shanghai Tunnel Engineering & Rail Transit Design and Research Institute, 2011: 114-120, 148. (in Chinese)
|
[5] |
刘庭金, 黄鸿浩, 许饶, 等. 粘贴钢板加固地铁盾构隧道承载性能研究[J]. 中国公路学报, 2017, 30(8): 91-99.
LIU T J, HUANG H H, XU R, et al. Research on load-bearing capacity of metro shield tunnel lining strengthened by bonded steel plates[J]. China Journal of Highway and Transport, 2017, 30(8): 91-99. (in Chinese)
|
[6] |
吴波, 罗跃春, 臧建波. 钢管混凝土加固盾构隧道管片接头受力性能试验研究[J]. 建筑结构学报, 2019, 40(12): 105-112.
WU B, LUO Y C, ZANG J B. Experimental study on mechanical performance of tunnel segment joints strengthened using concrete-filled steel tubes[J]. Journal of Building Structures, 2019, 40(12): 105-112. (in Chinese)
|
[7] |
任天宇, 刘树亚, 柳献. 波纹钢板加固盾构隧道衬砌管片抗弯性能试验研究[J]. 隧道建设(中英文), 2019, 39(2): 317-323.
REN T Y, LIU S Y, LIU X. Experimental study of bending capacity of shield tunnel lining segment strengthened by corrugated steel[J]. Tunnel Construction, 2019, 39(2): 317-323. (in Chinese)
|
[8] |
刘学增, 赖浩然, 桑运龙, 等. 不同变形条件下盾构隧道粘钢加固效果的模型试验研究[J]. 岩土工程学报, 2020, 42(11): 2115-2123.
LIU X Z, LAI H R, SANG Y L, et al. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. (in Chinese)
|
[9] |
ZHAO H, LIU X, BAO Y, et al. Simplified nonlinear simulation of shield tunnel lining reinforced by epoxy bonded steel plates[J]. Tunnelling and Underground Space Technology, 2016, 51: 362-371. doi: 10.1016/j.tust.2015.10.004
|
[10] |
王秀丽. 粘钢加固法在隧道衬砌裂损快速修补中的应用研究[J]. 施工技术, 2018, 47(10): 61-65, 104.
WANG X L. Research of bonded steel strengthening method in quick repair of tunnel lining cracking[J]. Construction Technology, 2018, 47(10): 61-65, 104. (in Chinese)
|
[11] |
TANG M, LIU X, YUAN Y. Non-linear analysis of mechanical behaviors of shield tunnel segments reinforced by steel plate[C]//Proceedings of the Euro-C Conference. [S. l. ]: [s. n. ], 2014: 899-904.
|
[12] |
毕湘利, 柳献, 王秀志, 等. 内张钢圈加固盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(11): 128-137.
BI X L, LIU X, WANG X Z, et al. Experimental study on the ultimate load-bearing capacity of deformed segmental tunnel linings strengthened by steel plates[J]. China Civil Engineering Journal, 2014, 47(11): 128-137. (in Chinese)
|
[13] |
孙雅珍, 于阳, 王金昌, 等. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究[J]. 岩土工程学报, 2022, 44(2): 343-351.
SUN Y Z, YU Y, WANG J C, et al. Mechanical properties of linings of shield tunnel strengthened by steel plates considering interface effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 343-351. (in Chinese)
|
[14] |
翟五洲, 翟一欣, 张东明, 等. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(增刊2): 235-239.
ZHAI W Z, ZHAI Y X, ZHANG D M, et al. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl 2): 235-239. (in Chinese)
|
[15] |
罗跃春. 基于钢管混凝土部件的盾构隧道加固试验与分析[D]. 广州: 华南理工大学, 2019.
LUO Y C. Experiment and analysis of shield tunnel strengthened with concrete filled steel tubes[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
|
[16] |
ARNAU O, MOLINS C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: numerical simulation[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 764-777. doi: 10.1016/j.tust.2011.05.002
|
[17] |
艾辉军, 彭立敏, 施成华. 基于三维非连续接触模型的管片接头静动力特性分析[J]. 岩土工程学报, 2013, 35(11): 2023-2029.
AI H J, PENG L M, SHI C H. Static and dynamic characteristic analysis of segment joints based on three-dimensional discontinuous contact model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2023-2029. (in Chinese)
|
[18] |
BIRTEL V, MARK P. Parameterised finite element modelling of RC beam shear failure[C]//Proceedings of the 19th Annual International ABAQUS Users' Conference. Boston: [s. n. ], 2006: 95-108.
|
[19] |
LI X J, YAN Z G, WANG Z, et al. Experimental and analytical study on longitudinal joint opening of concrete segmental lining[J]. Tunnelling and Underground Space Technology, 2015, 46: 52-63.
|
[20] |
WANG D H, JU Y Z, ZHENG W Z. Strength of reactive powder concrete beam-column joints reinforced with high-strength (HRB600) bars under seismic loading[J]. Strength of Materials, 2017, 49(1): 139-151.
|
[21] |
张帅. 钢筋混凝土柱抗震性能及其尺寸效应研究[D]. 北京: 北京工业大学, 2018.
ZHANG S. Seismic performances and the Corresponding size effect of RC columns[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
|
[22] |
刘宏波, 曹万林, 乔崎云, 等. 混凝土框架- 单排配筋围护墙结构抗震试验研[J]. 北京工业大学学报, 2019, 45(9): 870-878.
LIU H B, CAO W L, QIAO Q Y, et al. Experimental study on seismic behavior of RC frame with single row of steel bars shear wall[J]. Journal of Beijing University of Technology, 2019, 45(9): 870-878. (in Chinese)
|
[23] |
曹万林, 杨兆源. 装配式轻钢框架- 轻钢骨架轻混凝土墙板结构抗震性能[J]. 北京工业大学学报, 2024, 50(2): 165-179. doi: 10.11936/bjutxb2023080027
CAO W L, YANG Z Y. Seismic behavior of prefabricated lightweight steel frame-light steel keel-lightweight concrete shear wall structure[J]. Journal of Beijing University of Technology, 2024, 50(2): 165-179. (in Chinese) doi: 10.11936/bjutxb2023080027
|
[24] |
刘哲锋, 赵鹏, 陈逵. 基于能量耗散历程特征的往复推覆分析方法研究[J]. 世界地震工程, 2017, 33(2): 39-45.
LIU Z F, ZHAO P, CHEN K. Cyclic pushover analysis method based on the seismic energy dissipation course characteristics[J]. World Earthquake Engineering, 2017, 33(2): 39-45. (in Chinese)
|
[25] |
中国建筑科学研究院. 建筑抗震试验方法规程: JGJ/T101—2015[S]. 北京: 中国建筑工业出版社, 2015.
|