• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
SI Pengbo, LI Shuangyuan, LIU Chang, LI Meng. Contemporary Survey of Machine Learning-based Approaches to Solving Communication Issues for Intelligent Reflecting Surfaces[J]. Journal of Beijing University of Technology, 2025, 51(1): 87-99. DOI: 10.11936/bjutxb2023110015
Citation: SI Pengbo, LI Shuangyuan, LIU Chang, LI Meng. Contemporary Survey of Machine Learning-based Approaches to Solving Communication Issues for Intelligent Reflecting Surfaces[J]. Journal of Beijing University of Technology, 2025, 51(1): 87-99. DOI: 10.11936/bjutxb2023110015

Contemporary Survey of Machine Learning-based Approaches to Solving Communication Issues for Intelligent Reflecting Surfaces

More Information
  • Received Date: November 16, 2023
  • Revised Date: January 15, 2024
  • Intelligent reflecting surfaces (IRS) can dynamically change the wireless channel and improve the communication performance by subtly adjusting the signal reflection through a large number of low-cost passive reflecting elements, which has become the focus of wireless communication research. However, due to the addition of IRS, the whole communication system becomes more complex and the dynamics of the system is higher, making the communication system face many new challenges. With a strong data processing and adaptive ability, machine learning (ML) can constantly adapt to changing environments and needs and well cope with many challenges in communication systems. Therefore, employing ML to tackle issues in IRS-assisted communication systems has emerged as a central theme of current research. Based on this, this paper gives a systematic overview of the application of ML in IRS system. Starting with the problems existing in IRS-assisted communication system, this paper expounds and analyzes the application of ML in IRS system from four aspects: design and optimization of reflection factor, channel processing and modeling, resource allocation and management, and security enhancement, and it also discusses the advantages and future development trends and challenges of applying ML in IRS system.

  • [1]
    AHMED M, WAHID A, LAIQUE S S, et al. A survey on STAR-RIS: use cases, recent advances, and future research challenges[J]. IEEE Internet of Things Journal, 2023, 10(16): 14689-14711. doi: 10.1109/JIOT.2023.3279357
    [2]
    ABOAGYE S, NDJIONGUE A R, NGATCHED T M N, et al. RIS-assisted visible light communication systems: a tutorial[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 251-288.
    [3]
    SONG W, RAJAK S, DANG S P, et al. Deep learning enabled IRS for 6G intelligent transportation systems: a comprehensive study[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12973-12990. doi: 10.1109/TITS.2022.3184314
    [4]
    SARKAR D, ANTAR Y. Path-loss modelling and scalloping aspects in intelligent reflecting surface assisted communication: a method-of-moment analysis[C]//2022 16th European Conference on Antennas and Propagation. Piscataway, NJ: IEEE, 2022: 1-5.
    [5]
    AZAM I, QAYYUM A, ASMORO K, et al. Joint power and reflecting elements optimization for intelligent reflecting surface assisted NOMA[C]//2022 International Wireless Communications and Mobile Computing. Piscataway, NJ: IEEE, 2022: 61-66.
    [6]
    SIROJUDDIN A, PUTRA D D, HUANG W J. Low-complexity sum-capacity maximization for intelligent reflecting surface-aided MIMO systems[J]. IEEE Wireless Communications Letters, 2022, 11(7): 1354-1358. doi: 10.1109/LWC.2022.3167731
    [7]
    XUN W, LIU Y X, NI Y Y, et al. A survey on terahertz communication theory assisted by intelligent reflecting surface and device-to-device technologies[C]//2022 IEEE 22nd International Conference on Communication Technology. Piscataway, NJ: IEEE, 2022: 678-682.
    [8]
    ZHU Q N, GAO Y L, XIAO Y, et al. Intelligent reflecting surface aided wireless networks: dynamic user access and system sum-rate maximization[J]. IEEE Transactions on Communications, 2022, 70(4): 2870-2881. doi: 10.1109/TCOMM.2022.3155147
    [9]
    BELDI C, DZIRI A, ABDELKEFI F, et al. PARAFAC decomposition based channel estimation for RIS-aided multi-user MISO wireless communications[C]//2023 International Wireless Communications and Mobile Computing. Piscataway, NJ: IEEE, 2023: 1537-1542.
    [10]
    HUANG Y W, ZHU L P, ZHANG R. Integrating intelligent reflecting surface into base station: architecture, channel model, and passive reflection design[J]. IEEE Transactions on Communications, 2023, 71(8): 5005-5020. doi: 10.1109/TCOMM.2023.3282592
    [11]
    TAHA A, ALRABEIAH M, ALKHATEEB A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems[C]//2019 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2019: 1-6.
    [12]
    YANG Z, LIU Y W, CHEN Y, et al. Deep reinforcement learning for RIS-aided non-orthogonal multiple access downlink networks[C]//GLOBECOM 2020—2020 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2020: 1-6.
    [13]
    SONG Y Z, KHANDAKER M R A, TARIQ F, et al. Truly intelligent reflecting surface-aided secure communication using deep learning[C]//2021 IEEE 93rd Vehicular Technology Conference. Piscataway, NJ: IEEE, 2021: 1-6.
    [14]
    钟灿伟. 基于深度强化学习的IRS辅助通信系统性能优化研究[D]. 广州: 广东工业大学, 2022.

    ZHONG C W. Deep reinforcement learning-based performance optimization for IRS-assisted wireless communication systems[D]. Guangzhou: Guangdong University of Technology, 2022. (in Chinese)
    [15]
    FATHY M, ABOOD M S, GUO J. A generalized neural network-based optimization for multiple IRSs-aided communication system[C]//2021 IEEE 21st International Conference on Communication Technology. Piscataway, NJ: IEEE, 2021: 480-486.
    [16]
    WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409. doi: 10.1109/TWC.2019.2936025
    [17]
    LI K Y, HUANG C, GONG Y, et al. Double deep learning for joint phase-shift and beamforming based on cascaded channels in RIS-assisted MIMO networks[J]. IEEE Wireless Communications Letters, 2023, 12(4): 659-663. doi: 10.1109/LWC.2023.3238073
    [18]
    PEREIRA-RUISÁNCHEZ D, FRESNEDO Ó, PÉREZ-ADÁN D, et al. Deep contextual bandit and reinforcement learning for IRS-assisted MU-MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9099-9114. doi: 10.1109/TVT.2023.3249353
    [19]
    YAN W C, SUN G C, HAO W M, et al. Machine learning-based beamforming design for millimeter wave IRS communications with discrete phase shifters[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2467-2471. doi: 10.1109/LWC.2022.3159008
    [20]
    CHEN J C. Machine learning-inspired algorithmic framework for intelligent reflecting surface-assisted wireless systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10671-10685. doi: 10.1109/TVT.2021.3110970
    [21]
    LIU Y Z, HU Q Y, CAI Y L, et al. Deep-unfolding beamforming for intelligent reflecting surface assisted full-duplex systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4784-4800. doi: 10.1109/TWC.2021.3133296
    [22]
    NAEEM F, QARAQE M, CELEBI H. Joint deployment design and phase shift of IRS-assisted 6G networks: an experience-driven approach[J]. IEEE Internet of Things Journal, 2023, 10(20): 17647-17655. doi: 10.1109/JIOT.2023.3278384
    [23]
    ZHANG R C, XIONG K, LU Y, et al. Joint coordinated beamforming and power splitting ratio optimization in MU-MISO SWIPT-enabled HetNets: a multi-agent DDQN-based approach[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(2): 677-693. doi: 10.1109/JSAC.2021.3118397
    [24]
    HUA S, SHI Y M. Reconfigurable intelligent surface for green edge inference in machine learning[C]//2019 IEEE Globecom Workshops. Piscataway, NJ: IEEE, 2019: 1-6.
    [25]
    JIANG T, CHENG H V, YU W. Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 1931-1945. doi: 10.1109/JSAC.2021.3078502
    [26]
    YANG Q P, CHEN R F, ZHANG H X. Channel modeling for RIS-aided MIMO communication system in near- and far-fields[C]//2023 6th International Conference on Electronics Technology. Piscataway, NJ: IEEE, 2023: 587-592.
    [27]
    LIAN Z X, SU Y J, WANG Y J, et al. A novel geometry-based 3-D wideband channel model and capacity analysis for IRS-assisted UAV communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5502-5517. doi: 10.1109/TWC.2023.3234555
    [28]
    SUN G Q, HE R S, SONG Y X, et al. Analysis and comparison of narrowband channels with different phase shifts in RIS-aided communication systems[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(10): 2497-2501. doi: 10.1109/LAWP.2023.3292281
    [29]
    WEI Y, ZHAO M M, ZHAO M J. Channel distribution learning: model-driven GAN-based channel modeling for IRS-aided wireless communication[J]. IEEE Transactions on Communications, 2022, 70(7): 4482-4497. doi: 10.1109/TCOMM.2022.3176316
    [30]
    刘诗雨. 基于深度学习的IRS辅助通信关键技术研究[D]. 杭州: 浙江大学, 2021.

    LIU S Y. Research on key technologies of IRS aided communication based on deep learning[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [31]
    NGUYEN C, HOANG T M, CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1: 43-60. doi: 10.1109/TMLCN.2023.3278232
    [32]
    LI T T, YANG Y, LEE J, et al. DCSaNet: dilated convolution and self-attention-based neural network for channel estimation in IRS-aided multi-user communication system[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1139-1143. doi: 10.1109/LWC.2023.3263836
    [33]
    LIU Y, AL-NAHHAL I, DOBRE O A, et al. Extreme learning machine-based channel estimation in IRS-assisted multi-user ISAC system[J]. IEEE Transactions on Communications, 2023, 71(12): 6993-7007. doi: 10.1109/TCOMM.2023.3308150
    [34]
    ELBIR A M, COLERI S, MISHRA K V. Federated channel learning for intelligent reflecting surfaces with fewer pilot signals[C]//2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop. Piscataway, NJ: IEEE, 2022: 226-230.
    [35]
    ELBIR A M, COLERI S. Federated learning for channel estimation in conventional and RIS-assisted massive MIMO[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4255-4268. doi: 10.1109/TWC.2021.3128392
    [36]
    LI Y H, BAI J X, LI D, et al. Communication-efficient federated learning with an event-triggering strategy[C]//2022 IEEE 11th Data Driven Control and Learning Systems Conference. Piscataway, NJ: IEEE, 2022: 347-352.
    [37]
    ALI M, NAEEM F, TARIQ M, et al. Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(2): 778-789. doi: 10.1109/JBHI.2022.3181823
    [38]
    STAŇO M, HLUCHÝ L, BOBÁK M, et al. Federated learning methods for analytics of big and sensitive distributed data and survey[C]//2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics. Piscataway, NJ: IEEE, 2023: 000705-000710.
    [39]
    LI Q B, WEN Z Y, WU Z M, et al. A survey on federated learning systems: vision, hype and reality for data privacy and protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3347-3366. doi: 10.1109/TKDE.2021.3124599
    [40]
    CAI P H, ZONG J, LUO X L, et al. Downlink channel tracking for intelligent reflecting surface-aided FDD MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3341-3353. doi: 10.1109/TVT.2021.3063138
    [41]
    韦逸. 基于深度学习的物理层通信技术研究[D]. 杭州: 浙江大学, 2022.

    WEI Y. Deep learning based communication technology for physical layer[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
    [42]
    WOON F S, LEOW C Y. Intelligent reflecting surfaces aided millimetre wave blockage prediction for vehicular communication[C]//2022 IEEE 6th International Symposium on Telecommunication Technologies. Piscataway, NJ: IEEE, 2022: 11-15.
    [43]
    YU C, XIA X Y, LI Y L, et al. Millimeter-wave antenna arrays for 5G mobile handset[C]//2022 16th European Conference on Antennas and Propagation. Piscataway, NJ: IEEE, 2022: 1-4.
    [44]
    RAJESHWAR REDDY L, BHUKYA R N. A comprehensive survey on mm wave systems with beamforming effects in antenna for 5G applications[C]//2022 6th International Conference on Trends in Electronics and Informatics. Piscataway, NJ: IEEE, 2022: 504-509.
    [45]
    FERDOUSE L, WOUNGANG I, ANPALAGAN A, et al. A resource allocation policy for downlink communication in distributed IRS aided multiple-input single-output systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2410-2424. doi: 10.1109/TCOMM.2023.3242352
    [46]
    GAO X Y, LIU Y W, LIU X, et al. Machine learning empowered resource allocation in IRS aided MISO-NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3478-3492. doi: 10.1109/TWC.2021.3122409
    [47]
    ZHANG T C, MAO S W. Energy-efficient federated learning with intelligent reflecting surface[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 845-858. doi: 10.1109/TGCN.2021.3126795
    [48]
    HU Y T, CHEN M, CHEN M Z, et al. Energy minimization for federated learning with IRS-assisted over-the-air computation[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2021: 3105-3109.
    [49]
    HUANG N, WANG T S, WU Y, et al. Delay minimization for intelligent reflecting surface assisted federated learning[J]. China Communications, 2022, 19(4): 216-229. doi: 10.23919/JCC.2022.04.016
    [50]
    MAO S, LIU L, ZHANG N, et al. Intelligent reflecting surface-assisted low-latency federated learning over wireless networks[J]. IEEE Internet of Things Journal, 2023, 10(2): 1223-1235. doi: 10.1109/JIOT.2022.3204637
    [51]
    LV S Y, XU X D, HAN S J, et al. RIS-enhanced secure transmission in MTC networks with finite blocklength[J]. IEEE Transactions on Communications, 2023, 71(6): 3513-3527. doi: 10.1109/TCOMM.2023.3255903
    [52]
    GUO Y, LIU Y, WU Q Q, et al. Enhanced secure communication via novel double-faced active RIS[J]. IEEE Transactions on Communications, 2023, 71(6): 3497-3512. doi: 10.1109/TCOMM.2023.3250454
    [53]
    YUN K, JIN Y, HUANG Q, et al. A network security approach based on machine learning[C]//2023 IEEE International Conference on Integrated Circuits and Communication Systems. Piscataway, NJ: IEEE, 2023: 1-5.
    [54]
    HARZEVILI N S, SHIN J, WANG J J, et al. Characterizing and understanding software security vulnerabilities in machine learning libraries[C]//2023 IEEE/ACM 20th International Conference on Mining Software Repositories. Piscataway, NJ: IEEE, 2023: 27-38.
    [55]
    HAMDAN M Q, HAMDI K A. When federated learning and mobile intelligent reflecting surfaces assist V2V communications[C]//2022 IEEE 95th Vehicular Technology Conference. Piscataway, NJ: IEEE, 2022: 1-5.
    [56]
    CATAK F O, KUZLU M, TANG H L, et al. Security hardening of intelligent reflecting surfaces against adversarial machine learning attacks[J]. IEEE Access, 2022, 10: 100267-100275. doi: 10.1109/ACCESS.2022.3206012
  • Related Articles

    [1]LU Dechun, XU Bing, KONG Fanchao, MA Yiding, DU Xiuli. Intelligent Prediction Method for Settlement Curves of Shield Tunnel Based on Machine Learning Algorithms[J]. Journal of Beijing University of Technology, 2024, 50(11): 1285-1300. DOI: 10.11936/bjutxb2023100022
    [2]FANG Juan, LIU Zhenzhen, CHEN Siqi, LI Shuopeng. IRS-assisted NOMA-MEC Communication Resource Allocation Optimization Based on Deep Reinforcement Learning[J]. Journal of Beijing University of Technology, 2024, 50(8): 930-938. DOI: 10.11936/bjutxb2023020013
    [3]WANG Huina, LI Jinshu, LI Jianqiang, LIU Bo. Survey on Machine Learning-based Radiogenomic Study of Breast Cancer[J]. Journal of Beijing University of Technology, 2024, 50(6): 748-762. DOI: 10.11936/bjutxb2022080014
    [4]SUN Enchang, YUAN Yongyi, WU Bing, QU Hanxing, ZHANG Yanhua. Deep Reinforcement Learning and Mobile Communication Resource Management: Algorithms, Progress, and Prospects[J]. Journal of Beijing University of Technology, 2023, 49(1): 71-88. DOI: 10.11936/bjutxb2021040026
    [5]SUN Enchang, ZHANG Hui, HE Ruolan, ZHANG Dongying, ZHANG Yanhua. Mobile Communication Resource Management Based on Federated Learning: Methods, Progress and Prospect[J]. Journal of Beijing University of Technology, 2022, 48(7): 783-793. DOI: 10.11936/bjutxb2021030017
    [6]SUN Enchang, QU Hanxing, YUAN Yongyi, ZHANG Yanhua. Survey of D2D Communication Resource Allocation Methods in Cellular Networks[J]. Journal of Beijing University of Technology, 2021, 47(10): 1188-1200. DOI: 10.11936/bjutxb2020040007
    [7]ZHANG Yanhua, YANG Le, LI Meng, WU Wenjun, YANG Ruizhe, SI Pengbo. Optimization of Resource Allocation for Industrial Internet Based on Q-learning[J]. Journal of Beijing University of Technology, 2020, 46(11): 1213-1221. DOI: 10.11936/bjutxb2019070011
    [8]JI Junzhong, PANG Haoming, YANG Cuicui, LIU Jinduo. Text Classification Method Based on Multi-layer Extreme Learning Machine[J]. Journal of Beijing University of Technology, 2019, 45(6): 534-545. DOI: 10.11936/bjutxb2017120038
    [9]JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. Journal of Beijing University of Technology, 2017, 43(1): 28-35. DOI: 10.11936/bjutxb2016040093
    [10]REN Hong-ge, RUAN Xiao-gang. Self-learning Algorithm for Robot Based on Boltzamnn Machine[J]. Journal of Beijing University of Technology, 2012, 38(1): 60-64.
  • Cited by

    Periodical cited type(5)

    1. 宋文强,徐伟,冯琳. 基于残差网络的地基云图识别方法研究. 电子测量技术. 2024(02): 185-192 .
    2. 张雪,贾克斌,刘钧,张亮. 基于多任务学习的地基云图识别与分割技术. 气象. 2023(04): 454-466 .
    3. 魏亮,朱婷婷,过奕任,倪超,滕广,李岩. 基于DAR-CapsNet的地基云图云分类. 太阳能学报. 2023(11): 189-195 .
    4. 顾天红,杜小玲,李力,朱育雷,张艳梅,吴昌航. 基于纹理特征和机器学习的卫星云图分类实验. 中低纬山地气象. 2023(05): 50-55 .
    5. 张雪,贾克斌,刘钧,张亮. 面向轻量化的地基云图分割技术研究. 测控技术. 2022(09): 37-43 .

    Other cited types(5)

Catalog

    Article views (114) PDF downloads (45) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return