Citation: | LI Junmei, LU Huimin, LI Yanfeng, OUYANG Li, KANG Siyan, GUO Zhicheng. Study on the Influence of Different Slope Compositions on Both Sides of the Change of Slope Point on the Fire Environment in the Herringbone Tunnel[J]. Journal of Beijing University of Technology, 2025, 51(3): 308-316. DOI: 10.11936/bjutxb2023080001 |
To investigate the impact of different slope compositions on the fire environment in the tunnel with herringbone slope, the effects of different tunnel slope combinations and fire heat release rate on smoke spread and temperature distribution under natural ventilation were analyzed by the numerical method. Results show that when the slope of the small-slope side tunnel is 1%, the natural induced airflow speed and fire environment are significantly affected by the slope composition on both sides of the variable slope point, and the induced airflow speed is proportional to (Qw*H′*)0.113 6. When the slope of the small slope side tunnel is not less than 3%, the impact of the slope composition on both sides of the variable slope point can be negligible. Empirical equation for the maximum temperature rise in the herringbone tunnel is drawn, the maximum temperature rise in this kind of tunnel is much higher than that in the horizontal tunnel, and the safety of the tunnel ceiling above and close to the fire source should be concerned.
[1] |
谢飞, 乔雅心, 李俊梅, 等. 城市地下道路V形区段坡度构成对烟气扩散和重点排烟效果的影响研究[J]. 中国安全生产科学技术, 2022, 18(8): 142-147.
XIE F, QIAO Y X, LI J M, et al. Study on influence of slope composition at V-shaped section of urban underground road on smoke diffusion and point smoke exhaust effect[J]. Journal of Safety Science and Technology, 2022, 18(8): 142-147. (in Chinese)
|
[2] |
张秀松. 纵坡设置对高速公路长大隧道安全性影响分析[J]. 天津建设科技, 2021, 31(2): 39-43.
ZHANG X S. Analysis on influence of longitudinal slope setting on safety of long and large tunnels of expressway[J]. Tianjin Construction Science and Technology, 2021, 31(2): 39-43. (in Chinese)
|
[3] |
GAO Z H, LI L J, SUN C P, et al. Effect of longitudinal slope on the smoke propagation and ceiling temperature characterization in sloping tunnel fires under natural ventilation[J/OL]. Tunnelling and Underground Space Technology, 2022, 123: 104396[2023-10-11]. https://doi.org/10.1016/j.tust.2022.104396.
|
[4] |
MERCI B. One-dimensional analysis of the global chimney effect in the case of fire in an inclined tunnel[J]. Fire Safety Journal, 2008, 43(5): 376-389. doi: 10.1016/j.firesaf.2007.09.003
|
[5] |
JI J, WANG Z Y, DING L, et al. Effects of ambient pressure on smoke movement and temperature distribution in inclined tunnel fires[J/OL]. International Journal of Thermal Sciences, 2019, 145: 106006[2023-10-11]. https://doi.org/10.1016/j.ijthermalsci.2019.106006.
|
[6] |
KURIOKA H, OKA Y, SATOH H, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal, 2003, 38(4): 319-340. doi: 10.1016/S0379-7112(02)00089-9
|
[7] |
LI Y Z, LEI B, INGASON H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires[J]. Fire Safety Journal, 2011, 46(4): 204-210. doi: 10.1016/j.firesaf.2011.02.002
|
[8] |
李俊梅, 许鹏, 李炎锋, 等. 大坡度隧道临界风速的数值模拟和实验研究[J]. 北京工业大学学报, 2017, 43(11): 1706-1712. doi: 10.11936/bjutxb2016120063
LI J M, XU P, LI Y F, et al. Numerical and experimental study of the critical velocity in titled tunnel[J]. Journal of Beijing University of Technology, 2017, 43(11): 1706-1712. (in Chinese) doi: 10.11936/bjutxb2016120063
|
[9] |
易亮, 杨洋, 徐志胜, 等. 纵向通风公路隧道火灾拱顶烟气最高温度试验研究[J]. 燃烧科学与技术, 2011, 17(2): 109-114.
YI L, YANG Y, XU Z S, et al. Maximum temperature of smoke near vault in road tunnel fires with longitudinal ventilation[J]. Journal of Combustion Science and Technology, 2011, 17(2): 109-114. (in Chinese)
|
[10] |
OKA Y, KAKAE N, IMAZEKI O, et al. Temperature property of ceiling jet in an inclined tunnel[J]. Procedia Engineering, 2013, 62: 234-241. doi: 10.1016/j.proeng.2013.08.060
|
[11] |
姜学鹏, 廖湘娟, 何振华. 人字坡山岭隧道火灾顶板下方烟气最高温度的研究[J]. 安全与环境学报, 2018, 18(3): 925-929.
JIANG X P, LIAO X J, HE Z H. Maximum temperature of smoke beneath the ceiling in the herringbone slope tunnel fire[J]. Journal of Safety and Environment, 2018, 18(3): 925-929. (in Chinese)
|
[12] |
王玉锁, 冯高飞, 吴浩, 等. 纵向通风下不同坡形隧道火灾烟气温度分布特性研究[J]. 隧道建设, 2016, 36(11): 1317-1324.
WANG Y S, FENG G F, WU H, et al. Study of characteristics of fire smoke temperature distribution in tunnels with different slope shapes under longitudinal ventilation[J]. Tunnel Construction, 2016, 36(11): 1317-1324. (in Chinese)
|
[13] |
MCGRATTAN K, HOSTIKKA S, MCDERMOTT R, et al. Fire dynamics simulator (version 6.0) use's guide[R]. Maryland, USA: National Institute of Standards and Technology, 2013.
|
[1] | LI Hong, ZHANG Xu, HUANG Haixin, Wolfgang Tillmann. Progress in the Numerical Simulation of Brazing Process[J]. Journal of Beijing University of Technology, 2017, 43(6): 956-963. DOI: 10.11936/bjutxb2016080035 |
[2] | LI Jun-mei, XU Peng, LI Yan-feng, CHEN Chao, LI Yan, CHANG Jun. Numerical Simulation and Experimental Studies on the Effect of Slope on the Maximum Smoke Temperature Under the Ceiling in Tunnel Fires[J]. Journal of Beijing University of Technology, 2014, 40(5): 707-713. DOI: 10.3969/j.issn.0254-0037.2014.05.012 |
[3] | LU Yu-lin, CHEN Xiao-ran, DING Jin-li. Analysis of Concrete Temperature in Early Age With Field Test and Numerical Simulation Methods[J]. Journal of Beijing University of Technology, 2013, 39(12): 1843-1848. DOI: 10.3969/j.issn.0254-0037.2013.12.013 |
[4] | SUN Tie-cheng, WANG Zheng-zheng, WANG Wei, MA Tian-ge. Numerical Simulation Analyses of Seismic Dynamic Response on Portals of Two Parallel Tunnels With Staggered Space[J]. Journal of Beijing University of Technology, 2013, 39(2): 220-226. DOI: 10.3969/j.issn.0254-0037.2013.02.011 |
[5] | SHI Lei, DU Xiu-li, FAN Xin. A Study on the Mesh Generation Method for Numerical Simulation of Blast Wave[J]. Journal of Beijing University of Technology, 2010, 36(11): 1465-1470. DOI: 10.3969/j.issn.0254-0037.2010.11.005 |
[6] | WU Yan-feng, SU Jing-yu, WANG Zhi-tao, WANG Wei. Research on Numerical Simulation of Building under Wind Load Environment[J]. Journal of Beijing University of Technology, 2009, 35(1): 84-88. DOI: 10.3969/j.issn.0254-0037.2009.01.015 |
[7] | YIN Ze-gao, SHI Bing, SHI Hong-da, SUN Dong-po. Numerical Simulation of Plug Discharge[J]. Journal of Beijing University of Technology, 2008, 34(8): 856-860. DOI: 10.3969/j.issn.0254-0037.2008.08.013 |
[8] | LIU Zhao-miao, LIU Hua-min, JIN Yan-mei. Numerical Simulation of Droplet Formation of Glycerin in Water[J]. Journal of Beijing University of Technology, 2008, 34(1): 14-19. DOI: 10.3969/j.issn.0254-0037.2008.01.003 |
[9] | ZHANG Yin-tao, TAO Lian-jin, BIAN Jin. Analysis of the Numerical Simulation of Ground Movement Induced by Shield Tunneling[J]. Journal of Beijing University of Technology, 2006, 32(4): 332-337. DOI: 10.3969/j.issn.0254-0037.2006.04.009 |
[10] | ZHOU Ding-wei, MA Zhong-fang. Numerical Simulation of Stagnation Point Heat Transfer with Impinging Submerged Circular Jets[J]. Journal of Beijing University of Technology, 2001, 27(3): 316-321. DOI: 10.3969/j.issn.0254-0037.2001.03.013 |