Citation: | GAO Aili, WANG Xuyi, HUANG Qing, SUI Xin, YANG Tang, CHENG Lihua, JIANG Bo, HUI Xiaoliang, ZHANG Zhanpeng, GAO Xiaodong. Distribution Characteristics and Influencing Factors of Enterobacteriaceae Loaded by Size-segregated Bioaerosols From Wastewater Treatment Plants[J]. Journal of Beijing University of Technology, 2023, 49(12): 1330-1337. DOI: 10.11936/bjutxb2023070011 |
To investigate the distribution characteristics and influencing factors of Enterobacteriaceae loaded by size-segregated bioaerosols from wastewater treatment plants (WWTPs), size-segregated bioaerosols in different seasons were collected within and around a WWTP in Jiangsu Province, and the concentration of the loaded Enterobacteriaceae was then analyzed. For the Enterobacteriaceae in overall bioaerosols and corresponding respiratory fragments, winter was the dominant emission season, and the sludge dewatering room was the main emission unit. Significant difference of Enterobacteriaceae loaded on size-segregated bioaerosols from WWTPs was found among different seasons or treatment units. Compared to upwind, the WWTP and downwind were characterized with higher enrichment of Enterobacteriaceae in overall bioaerosols and corresponding respiratory fragments. The size distribution of Enterobacteriaceae loaded by bioaerosols was significantly different between the WWTP and upwind, with a dissimilarity of 64.32%; that between the WWTP and downwind were not significantly different, and the dissimilarity decreased to 32.17%. The relative humidity, temperature, wind speed, and solar radiation, all had significant effects on the Enterobacteriaceae loaded by size-segregated bioaerosols (P < 0.05); among them, the relative humidity was the predominant factor. This study can provide a theoretical basis for the risk assessment and control of bioaerosol pollution in WWTPs.
[1] |
SMETS W, MORETTI S, DENYS S, et al. Airborne bacteria in the atmosphere: presence, purpose, and potential[J]. Atmospheric Environment, 2016, 139: 214-221. doi: 10.1016/j.atmosenv.2016.05.038
|
[2] |
陈兰夏迪, 林钦浩, 彭超, 等. 生物气溶胶的吸湿性[J]. 中国环境科学, 2020, 40(12): 5105-5114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202012001.htm
CHEN L X D, LIN Q H, PENG C, et al. Hygroscopicity of bioaerosols[J]. China Environmental Science, 2020, 40(12): 5105-5114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202012001.htm
|
[3] |
马曼曼, 甄毓, 米铁柱, 等. 青岛冬季霾天不同粒径生物气溶胶中细菌群落特征研究[J]. 中国环境科学, 2017, 37(8): 2855-2865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201708009.htm
MA M M, ZHEN Y, MI T Z, et al. Bacterial community characteristics in different particle sizes of bioaerosols in winter haze days in Qingdao[J]. China Environmental Science, 2017, 37(8): 2855-2865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201708009.htm
|
[4] |
杨唐, 惠晓亮, 王振兴, 等. 污水处理厂生物气溶胶抗生素抗性污染特征[J]. 中国环境科学, 2022, 42(12): 5626-5632. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202212018.htm
YANG T, HUI X L, WANG Z X, et al. Pollution characteristics of antibiotics resistance genes associated with bioaerosols from a wastewater treatment plant[J]. China Environmental Science, 2022, 42(12): 5626-5632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202212018.htm
|
[5] |
ZHU G B, WANG X M, YANG T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. ISME Journal, 2020, 15(1): 270-281.
|
[6] |
刘曼丽, 熊红松, 马民, 等. 市政污水处理厂中生物气溶胶污染物的排放和微生物定量风险评价[J]. 给水排水, 2020, 56(增刊1): 567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS2020S1138.htm
LIU M L, XIONG H S, MA M, et al. Emission and quantitative microbial risk assessment (QMRA) of bioaerosols in municipal wastewater treatment plants[J]. Water & Wastewater Engineering, 2020, 56(Suppl 1): 567-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS2020S1138.htm
|
[7] |
李沅津, 杨庆, 赵茹涵, 等. A2O工艺污水处理厂微生物气溶胶逸散特征及暴露风险评价[J]. 环境科学学报, 2021, 41(9): 3457-3463. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202109007.htm
LI Y J, YANG Q, ZHAO R H, et al. Emission characteristics and exposure risk assessment of microbial aerosols from WWTP with A2O treatment process[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3457-3463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202109007.htm
|
[8] |
康心悦. A/A/O污水处理工艺微生物气溶胶逸散特性研究[D]. 北京: 北京建筑大学, 2021: 1-2.
KANG X Y. Emission characteristics study of bioaerosol in A/A/O wastewater treatment process[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021: 1-2. (in Chinese)
|
[9] |
YANG T, HAN Y P, ZHANG M Z, et al. Characteristics and exposure risks of potential pathogens and toxic metal(loid)s in aerosols from wastewater treatment plants[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109543. doi: 10.1016/j.ecoenv.2019.109543
|
[10] |
ZIELINSKI W, HUBENY J, BUTA-HUBENY M, et al. Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment—a case study[J]. Science of the Total Environment, 2022, 827: 154354. doi: 10.1016/j.scitotenv.2022.154354
|
[11] |
LI J, ZHOU L T, ZHANG X Y, et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant[J]. Atmospheric Environment, 2016, 124: 404-412. doi: 10.1016/j.atmosenv.2015.06.030
|
[12] |
LIANG Z S, YU Y, YE Z K, et al. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human[J]. Environment International, 2020, 143: 105934. doi: 10.1016/j.envint.2020.105934
|
[13] |
ZIELINSKI W, KORZENIEWSKA E, HARNISZ M, et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment[J]. Environment International, 2020, 143: 105914.
|
[14] |
姚文冲, 楼秀芹, 方治国, 等. 南方典型旅游城市空气微生物粒径分布特征[J]. 中国环境科学, 2016, 36(10): 2938-2943 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201610008.htm
YAO W C, LOU X Q, FANG Z G, et al. The size distribution of airborne microbes in typical tourist city in Southeast China[J]. China Environment Science, 2016, 36(10): 2938-2943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201610008.htm
|
[15] |
杨唐, 韩云平, 李琳, 等. 雾-霾天人体平均呼吸高度处不同粒径气溶胶的微生物特性[J]. 环境科学, 2019, 40(4): 1680-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904018.htm
YANG T, HAN Y P, LI L, et al. Microbial properties of different size aerosols at human average respiratory height during fog-haze days[J]. Environmental Science, 2019, 40(4): 1680-1687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201904018.htm
|
[16] |
YANG T, JIANG L, CHENG L H, et al. Characteristics of size-segregated aerosols emitted from an aerobic moving bed biofilm reactor at a full-scale wastewater treatment plant[J]. Journal of Hazardous Materials, 2021, 416: 125833.
|
[17] |
房斌. 某机场航站楼生物气溶胶空气传播控制策略研究[D]. 青岛: 青岛理工大学, 2021: 5-10.
FANG B. Research on the control strategy of bioaerosol airborne transmission in an airport terminal[D]. Qingdao: Qingdao University of Technology, 2021: 5-10. (in Chinese)
|
[18] |
YANG T, JIANG L, BI X J, et al. Submicron aerosols share potential pathogens and antibiotic resistomes with wastewater or sludge[J]. Science of the Total Environment, 2022, 821: 153521.
|
[19] |
林碧玉. 儿童耐碳青霉烯类肠杆菌科细菌感染危险因素分析及风险列线图模型的构建[D]. 兰州: 兰州大学, 2022: 1-2.
LIN B Y. Risk factors and a risk nomogram model construction of carbapenem-resistant Enterobacteriaceae infection in children[D]. Lanzhou: Lanzhou University, 2022: 1-2. (in Chinese)
|
[20] |
于学政, 韩云平, 曹英楠, 等. 人为源微生物气溶胶的分布特征及风险研究进展[J]. 微生物学通报, 2023, 50(2): 667-686. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202302016.htm
YU X Z, HAB Y P, CAO Y N, et al. Progress in the distribution characteristics and risks of bioaerosols from anthropogenic sources[J]. Microbiology China, 2023, 50(2): 667-686. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202302016.htm
|
[21] |
YANG T, HAN Y P, LIU J X, et al. Aerosols from a wastewater treatment plant using oxidation ditch process: characteristics, source apportionment, and exposure risks[J]. Environmental Pollution, 2019, 250: 627-638.
|
[22] |
ANDERSEN A A. New sampler for the collection, sizing, and enumeration of viable airborne particles[J]. Journal of Bacteriology, 1958, 76(5): 471-484.
|
[23] |
UHRBRAND K, SCHULTZ A C, KOIVISTO A J, et al. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant[J]. Water Research, 2017, 112: 110-119.
|
[24] |
YANG K X, LI L, WANG Y J, et al. Airborne bacteria in a wastewater treatment plant: emission characterization, source analysis and health risk assessment[J]. Water Research, 2019, 149: 596-606.
|
[25] |
ZHEN Q, DENG Y, WANG Y Q, et al. Meteorological factors had more impact on airborne bacterial communities than air pollutants[J]. Science of the Total Environment, 2017, 601: 703-712.
|
[26] |
WANG Y, LI L, HAN Y P, et al. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions[J]. Ecotoxicology and Environmental Safety, 2018, 154: 162-170.
|
[27] |
LI P Y, LI L, WANG Y J, et al. Characterization, factors, and UV reduction of airborne bacteria in a rural wastewater treatment station[J]. Science of the Total Environment, 2020, 751: 141811.
|
[28] |
XIE J W, JIN L, WU D, et al. Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions[J]. Environmental Science & Technology, 2022, 56(11): 7040-7051.
|
[29] |
SONG L, ZHOU J F, WANG C, et al. Airborne pathogenic microorganisms and air cleaning technology development: a review[J]. Journal of Hazardous Materials, 2022, 424(B): 127429.
|
[30] |
HAN I, YOO K. Metagenomic profiles of antibiotic resistance genes in activated sludge, dewatered sludge and bioaerosols[J]. Water, 2020, 12(6): 1516.
|