• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZENG Hui, SHEN Zehan, ZHI Xiao, HUANG Yi, LI Tingyu, CHEN Yuliang, XIAO Yuanjie. Investigating Mechanisms of Porous Structure of Steel Slag Affecting Low-temperature Crack Resistance of Asphalt Mixture[J]. Journal of Beijing University of Technology, 2024, 50(1): 82-93. DOI: 10.11936/bjutxb2023060007
Citation: ZENG Hui, SHEN Zehan, ZHI Xiao, HUANG Yi, LI Tingyu, CHEN Yuliang, XIAO Yuanjie. Investigating Mechanisms of Porous Structure of Steel Slag Affecting Low-temperature Crack Resistance of Asphalt Mixture[J]. Journal of Beijing University of Technology, 2024, 50(1): 82-93. DOI: 10.11936/bjutxb2023060007

Investigating Mechanisms of Porous Structure of Steel Slag Affecting Low-temperature Crack Resistance of Asphalt Mixture

More Information
  • Received Date: June 04, 2023
  • Revised Date: June 28, 2023
  • Available Online: July 05, 2023
  • The macroscopic and microscopic mechanisms of porous structure of steel slag aggregates affecting low-temperature crack resistance of asphalt mixtures remain unexplored, hindering the effective maintenance of long-term performance of asphalt pavements incorporating steel slags. To address this deficiency, based on the results of laboratory low-temperature beam bending tests on asphalt mixtures incorporating steel slags (AMISS), a refined discrete element method (DEM) model of AMISS was established characterizing the porous structure of steel slag aggregates. DEM simulations of low-temperature beam bending tests were performed under different levels of surface pores of steel slags and absorbed asphalt by surface pores to quantitatively analyze the influence patterns and mechanisms of steel slag aggregates' surface pore structure on the fracture strength and micro-crack evolution characteristics of the specimens. Laboratory test results indicate that porous steel slag aggregates can only replace coarse aggregates larger than 2.36 mm, and that controlling the heating temperature of steel slags and extending the wet mixing time can ensure adequate absorption of asphalt binder by surface pores of steel slag aggregates. Numerical simulation results show that stress concentration occurs near the open surface pores of steel slag aggregates with micro-cracks propagating through the open surface pores. As the surface porosity of steel slag aggregates increases, the peak stress decreases, and micro-cracks are more likely to initiate around the open pores. The peak stress significantly decreases with decreasing level of absorbed asphalt by the open pores. The absorption of asphalt binder by the surface pores of steel slag aggregates significantly influences the low-temperature crack resistance of AMISS, especially micro-cracks tend to initiate from the open pores. This crack extension feature is more obvious when the open pores are barely filled by asphalt binder. The surface pores enhance the slag-asphalt interface bonding. However, larger open pores lead to stress concentration, making it easier for cracks to initiate in their vicinities. Therefore, it is recommended to control the content of steel slag aggregates with large open surface pores. In pavement applications, the amount of asphalt binder added into the drum drying the steel slags and the wet mixing time should be well controlled based on the natural moisture content of the steel slag aggregates to ensure low-temperature crack resistance of AMISS.

  • [1]
    王舒永, 陈国新, 徐宇晗, 等. 水泥稳定钢渣混合料离散元模型参数反演及断裂损伤研究[J]. 金属矿山, 2023, 52(3): 266-273.

    WANG S Y, CHEN G X, XU Y H, et al. Parameter inversion and damage research of cement-stabilized steel slag discrete element mode[J]. Metal Mine, 2023, 52(3): 266-273. (in Chinese)
    [2]
    李伟, 王成元, 王达, 等. 钢渣骨料沥青混合料路面层间剪切力学性能试验研究[J]. 公路, 2017, 62(4): 36-41.

    LI W, WANG C Y, WANG D, et al. Experimental study on interlayer shear mechanical properties of steel slag asphalt mixture pavement[J]. Highway, 2017, 62(4): 36-41. (in Chinese)
    [3]
    杨俊霖, 罗蓉, 樊向阳, 等. 基于多孔钢渣的沥青混合料设计与路用性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(1): 68-71.

    YANG J L, LUO R, FAN X Y, et al. Research on design and road performance of asphalt mixture with porous steel slag[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(1): 68-71. (in Chinese)
    [4]
    刘黎萍, 冯艳瑾. 钢渣AC-13沥青混合料路用性能研究[J]. 华东公路, 2017(5): 54-56.

    LIU L P, FENG Y J. Research on the road performance of steel slag AC-13 asphalt mixtures[J]. East China Highway, 2017(5): 54-56. (in Chinese)
    [5]
    卢发亮, 李晋. 钢渣骨料沥青混合料级配特征研究[J]. 公路, 2013(7): 222-227.

    LU F L, LI J. Study on the gradation characteristics of steel slag asphalt mixtures[J]. Highway, 2013(7): 222-227. (in Chinese)
    [6]
    刘卫东. 基于离散元的沥青混合料空间结构形成过程研究[D]. 南京: 东南大学, 2016: 71-103.

    LIU W D. Research on formation of spatial structure for asphalt mixture using discrete element method[D]. Nanjing: Southeast University, 2016: 71-103. (in Chinese)
    [7]
    吴文亮, 涂志先, 李智. 基于离散元法离析对混合料骨架结构特征影响[J]. 广西大学学报(自然科学版), 2018, 43(6): 2303-2310.

    WU W R, TU Z X, LI Z. Influence of segregation on structure characteristics of mixture skeleton based on discrete element method[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(6): 2303-2310. (in Chinese)
    [8]
    夏怡, 邹飞. 基于二维离散元法的沥青混合料低温开裂研究[J]. 公路, 2021, 66(3): 299-303.

    XIA Y, ZOU F. Research on low-temperature cracking of asphalt mixtures based on two-dimensional discrete element method[J]. Highway, 2021, 66(3): 299-303. (in Chinese)
    [9]
    陈俊, 黄晓明. 基于三维离散元法的沥青混合料断裂过程模拟[J]. 华南理工大学学报(自然科学版), 2012, 40(7): 21-26.

    CHEN J, HUANG X M. Simulation of fracture process of asphalt mixture using three-dimension discrete element method[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(7): 21-26. (in Chinese)
    [10]
    高虎, 杨新华, 陈龙. 沥青混合料半圆弯曲断裂实验和离散元数值分析[J]. 土木工程与管理学报, 2018, 35(4): 123-129.

    GAO H, YANG X H, CHEN L. Experimental and discrete element analysis of semi-circular bending fracture of heterogeneous asphalt mixture[J]. Journal of Civil Engineering and Management, 2018, 35(4): 123-129. (in Chinese)
    [11]
    高虎, 杨新华, 唐鹏. 沥青混合料车辙变形的离散元数值模拟[J]. 固体力学学报, 2018, 39(3): 277-283.

    GAO H, YANG X H, TANG P. Discrete element numerical simulation on rutting deformation of asphalt mixture[J]. Chinese Journal of Solid Mechanics, 2018, 39(3): 277-283. (in Chinese)
    [12]
    陈俊, 黄晓明. 基于离散元法的沥青混合料虚拟疲劳试验方法[J]. 吉林大学学报(工学版), 2010, 40(2): 435-440.

    CHEN J, HUANG X M. Virtual fatigue test of asphalt mixture based on discrete element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(2): 435-440. (in Chinese)
    [13]
    罗程. 钢渣骨料沥青混合料薄层罩面及层间抗剪性能研究[D]. 昆明: 昆明理工大学, 2021: 71-101.

    LUO C. Research on thin overlay and interlayer shear performance of steel slag asphalt mixture[D]. Kunming: Kunming University of Science and Technology, 2021: 71-101. (in Chinese)
    [14]
    WANG S, CHEN G, ZHANG L. Parameter inversion and microscopic damage research on discrete element model of cement-stabilized steel slag based on 3D scanning technology[J/OL]. Journal of Hazardous Materials, 2022, 424: 127402 [2022-02-15]. https://www.sciencedirect.com/science/article/pii/S0304389421023700?via%3Dihub.
    [15]
    BAI X, WANG L. Study on mesoscopic model of low-temperature cracking of steel slag asphalt mixture based on random aggregate[J/OL]. Construction and Building Materials, 2023, 364: 129974 [2023-01-18]. https://www.sciencedirect.com/science/article/pii/S0950061822036303?via%3Dihub.
    [16]
    陈俊, 黄晓明. 基于离散元方法的沥青混凝土断裂机理分析[J]. 北京工业大学学报, 2011, 37(2): 211-216, 259.

    CHEN J, HUANG X M. Analysis of fracture mechanism of asphalt concrete based on discrete element method[J]. Journal of Beijing University of Technology, 2011, 37(2): 211-216, 259. (in Chinese)
    [17]
    陈俊. 基于离散元方法的沥青混合料虚拟疲劳试验研究[D]. 南京: 东南大学, 2010: 35-74.

    CHEN J. Virtual fatigue tests of asphalt mixture based on discrete element method[J]. Nanjing: Southeast University. 2010: 35-74. (in Chinese)
    [18]
    陆秀峰, 刘西拉, 覃维祖. 从混凝土二维截面推测骨料粒径分布[J]. 岩石力学与工程学报, 2005(17): 3107-3112.

    LU X F, LIU X L, QIN W Z. Estimation of coarse aggregate size distribution from two-dimensional section[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(17): 3107-3112. (in Chinese)
    [19]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [20]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [21]
    朱月风, 张洪亮, 宋彬. 再生沥青混合料的黏弹性动态响应及疲劳性能[J]. 北京工业大学学报, 2017, 43(1): 135-142. doi: 10.11936/bjutxb2016060005

    ZHU Y F, ZHANG H L, SONG B. Visco-elastic dynamic response property and fatigue performance of recycled asphalt mixture[J]. Journal of Beijing University of Technology, 2017, 43(1): 135-142. (in Chinese) doi: 10.11936/bjutxb2016060005
    [22]
    张洪伟, 连海燕, 赵晓亮, 等. 橡胶颗粒沥青混合料破冰试验及其数值模拟[J]. 北京工业大学学报, 2014, 40(8): 1163-1167, 1203. https://journal.bjut.edu.cn/bjgydxxb/cn/article/id/f166a4db-d7a4-4c16-bb4b-9e1163d75e4e

    ZHANG H W, LIAN H Y, ZHAO X L, et al. Ice-breaking and numerical simulation of crumb rubber modified asphalt mixture[J]. Journal of Beijing University of Technology, 2014, 40(8): 1163-1167, 1203. (in Chinese) https://journal.bjut.edu.cn/bjgydxxb/cn/article/id/f166a4db-d7a4-4c16-bb4b-9e1163d75e4e
    [23]
    CIL M B, ALSHIBLI K A. 3D assessment of fracture of sand particles using discrete element method[J]. Géotechnique Letters, 2012, 2(3): 161-166. doi: 10.1680/geolett.12.00024
    [24]
    郑得标, 倪富健, 蒋继望, 等. 基于离散元法的沥青混合料复合断裂行为研究[J]. 江苏大学学报(自然科学版), 2020, 41(1): 87-92.

    ZHENG D B, NI F J, JIANG J W, et al. Mixed-mode fracture behavior of asphalt mixture based on discrete element method[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(1): 87-92. (in Chinese)
    [25]
    栾英成, 陈田, 马涛, 等. 基于精细化DEM建模的冷再生混合料断裂性能分析[J]. 中国公路学报, 2021, 34(10): 125-134.

    LUAN Y C, CHEN T, MA T, et al. Fracture performance analysis of cold-recycled mixture based on DEM precise modeling[J]. China Journal of Highway and Transport, 2021, 34(10): 125-134. (in Chinese)
    [26]
    杨超. 钢渣对沥青组分选择性吸收行为与抑制方法研究[D]. 武汉理工大学, 2019: 47-56.

    YANG C. Study on selective absorption behavior and suppression method of bituminous components for steel slag[D]. Wuhan: Wuhan University of Technology, 2019: 47-56. (in Chinese)
  • Related Articles

    [1]ZHANG Rui, YAN Qiaobing, HU Runze, MA Shang. Bicycle Micro-simulation Based on a Combined Model[J]. Journal of Beijing University of Technology, 2020, 46(9): 1048-1055. DOI: 10.11936/bjutxb2019050027
    [2]ZHAO Quanman, ZHANG Hongliang, GAO Jiangping, ZHOU Hao. Analysis of Subsequent Cracking of CRCP Punch-out Area and Influence Factors[J]. Journal of Beijing University of Technology, 2016, 42(5): 753-761. DOI: 10.11936/bjutxb2015100068
    [3]XU Hai-bin, DU Xiu-li. Numerical Simulation of Mesoscopic Tensile Fracture Process of Concrete Using the Cohesive Elements[J]. Journal of Beijing University of Technology, 2014, 40(11): 1666-1672,1686. DOI: 10.3969/j.issn.0254-0037.2014.11.011
    [4]ZHANG Hong-wei, LIAN Hai-yan, ZHAO Xiao-liang, LI Zhe. Ice-Breaking and Numerical Simulation of Crumb Rubber Modified Asphalt Mixture[J]. Journal of Beijing University of Technology, 2014, 40(8): 1163-1167,1203. DOI: 10.3969/j.issn.0254-0037.2014.08.007
    [5]YAO Li-yang, MA Qin, HE Zhong-mao. Design for Aggregate Gradation of OGFC Based on Discrete Element Method[J]. Journal of Beijing University of Technology, 2013, 39(6): 902-908. DOI: 10.3969/j.issn.0254-0037.2013.06.019
    [6]LEI Jun, HUANG Yi-feng, YANG Qing-sheng. Dynamic Crack Propagation by Boundary Element Method[J]. Journal of Beijing University of Technology, 2013, 39(6): 806-810. DOI: 10.3969/j.issn.0254-0037.2013.06.002
    [7]CHEN Jun, HUANG Xiao-ming. Analysis of Fracture Failure Mechanism of Asphalt Mixture Based on the Discrete Element Method[J]. Journal of Beijing University of Technology, 2011, 37(2): 211-216,259. DOI: 10.3969/j.issn.0254-0037.2011.02.009
    [8]HE Hao-xiang, YAN Wei-ming, QIAO Ya-ling. Matter-Elements Analysis Method for Seismic Damage Evaluation on RC Structure[J]. Journal of Beijing University of Technology, 2006, 32(9): 791-797. DOI: 10.3969/j.issn.0254-0037.2006.09.005
    [9]Niu Xiangjun. Mathematical Principles for the Discrete Equation——Discrete Analysis on Engineering Structures[J]. Journal of Beijing University of Technology, 1991, 17(1): 13-21.
    [10]Jiang Qing-yu. Response Regression Method-A Numerical Method of Continuous System Model Discretization Based on Equivalent Pulse-Response[J]. Journal of Beijing University of Technology, 1985, 11(2): 59-67.
  • Cited by

    Periodical cited type(4)

    1. 王红伟,冯学茂,刘家庆,武建民,焦晓东. 基于SCB的钢渣橡胶沥青混合料低温抗裂性能研究. 当代化工. 2025(01): 125-128+144 .
    2. 王明铜. 不同条件下多孔沥青混合料黏结性能研究. 中国建材科技. 2024(02): 93-96 .
    3. 易帅兵,李闯民,甘有为,刘明金. 钢渣沥青混合料的路用性能及CO_2排放量分析. 环境工程. 2024(05): 98-106 .
    4. 刘尊青,李宗才,古丽妮尕尔·阿卜来提,贾艺璇. 钢渣沥青混合料微波加热融冰性能研究. 新型建筑材料. 2024(06): 130-135 .

    Other cited types(4)

Catalog

    Article views (439) PDF downloads (50) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return