• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Lichun, YANG Chao, FU Fangyu. 6D Object Pose Estimation Enhanced by Structural Constraint[J]. Journal of Beijing University of Technology, 2025, 51(2): 173-182. DOI: 10.11936/bjutxb2023040019
Citation: WANG Lichun, YANG Chao, FU Fangyu. 6D Object Pose Estimation Enhanced by Structural Constraint[J]. Journal of Beijing University of Technology, 2025, 51(2): 173-182. DOI: 10.11936/bjutxb2023040019

6D Object Pose Estimation Enhanced by Structural Constraint

More Information
  • Received Date: April 10, 2023
  • Revised Date: May 21, 2023
  • Aiming at the problem that the 6D object pose estimation method based on the voting strategy ignores the structural information between keypoints, a 6D object pose estimation method enhanced by structural constraint, SC-Pose, is proposed. This method defines a shape descriptor to describe the structural information between the 2D keypoints of the object. By increasing the keypoint structural loss to constrain the predicted shape descriptor to be close to the ground-truth shape descriptor, the positioning of the 2D keypoints is more accurate, thereby ultimately enhancing the accuracy of 6D object pose estimation. Results on the LINEMOD, OCC-LINEMOD and TruncationLINEMOD datasets show that SC-Pose can significantly boost the accuracy of 6D object pose estimation.

  • [1]
    RAD M, LEPETIT V. BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth[C]//2017 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2017: 3848-3856.
    [2]
    TEKIN B, SINHA S N, FUA P. Real-time seamless single shot 6D object pose prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 292-301.
    [3]
    LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
    [4]
    PENG S D, LIU Y, HUANG Q X, et al. PVNet: pixel-wise voting network for 6DoF pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 4561-4570.
    [5]
    SONG C, SONG J R, HUANG Q X. HybridPose: 6D object pose estimation under hybrid representations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 431-440.
    [6]
    XIONG F, LIU C J, CHEN Q J. Region pixel voting network (RPVNet) for 6D pose estimation from monocular image[J]. Applied Sciences, 2021, 11(2): 743.
    [7]
    LIU X Y, IWASE S, KITANI K M. KDFNet: learning keypoint distance field for 6D object pose estimation[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE, 2021: 4631-4638.
    [8]
    YU X, ZHUANG Z Y, KONIUSZ P, et al. 6DoF object pose estimation via differentiable proxy voting regularizer[C]//British Machine Vision Conference. Berlin: Springer, 2020: 1-12.
    [9]
    ZAKHAROV S, SHUGUROV I, ILIC S. DPOD: 6D pose object detector and refiner[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1941-1950.
    [10]
    PARK K, PATTEN T, VINCZE M. Pix2Pose: pixel-wise coordinate regression of objects for 6D pose estimation[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE, 2019: 7668-7677.
    [11]
    LIU X Y, JONSCHKOWSKI R, ANGELOVA A, et al. KeyPose: multi-view 3D labeling and keypoint estimation for transparent objects[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 11602-11610.
    [12]
    HODAN T, BARATH D, MATAS J. EPOS: estimating 6D pose of objects with symmetries[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 11703-11712.
    [13]
    XIANG Y, SCHMIDT T, NARAYANAN V, et al. PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes[EB/OL]. [2023-05-20]. http://export.arxiv.org/abs/1711.00199.
    [14]
    KEHL W, MANHARDT F, TOMBARI F, et al. SSD-6D: making RGB-based 3D detection and 6D pose estimation great again[C]//2017 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2017: 1521-1529.
    [15]
    DO T T, CAI M, PHAM T, et al. Deep-6DPose: recovering 6D object pose from a single RGB image[EB/OL]. [2023-03-20]. https://arxiv.org/abs/1802.10367.
    [16]
    LI Z G, WANG G, JI X Y. CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DoF object pose estimation[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE, 2019: 7678-7687.
    [17]
    TIAN M, PAN L, ANG M H, et al. Robust 6D object pose estimation by learning RGB-D features[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE, 2020: 6218-6224.
    [18]
    WANG H, SRIDHAR S, HUANG J W, et al. Normalized object coordinate space for category-level 6D object pose and size estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 2642-2651.
    [19]
    TIAN M, ANG M H Jr, LEE G H. Shape prior deformation for categorical 6D object pose and size estimation[C]//European Conference on Computer Vision. Cham: Springer, 2020: 530-546.
    [20]
    PARK K, MOUSAVIAN A, XIANG Y, et al. LatentFusion: end-to-end differentiable reconstruction and rendering for unseen object pose estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 10710-10719.
    [21]
    CHEN D S, LI J, WANG Z, et al. Learning canonical shape space for category-level 6D object pose and size estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 11973-11982.
    [22]
    AMINI A, PERIYASAMY A S, BEHNKE S. T6D-Direct: transformers for multi-object 6D pose direct regression[C]//DAGM German Conference on Pattern Recognition. Cham: Springer, 2021: 530-544.
    [23]
    BUKSCHAT Y, VETTER M. EfficientPose: an efficient, accurate and scalable end-to-end 6D multi object pose estimation approach[EB/OL]. [2023-03-20]. https://arxiv.org/abs/2011.04307.
    [24]
    SHEN W, ZHAO K, JIANG Y, et al. Object skeleton extraction in natural images by fusing scale-associated deep side outputs[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 222-230.
    [25]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770-778.
    [26]
    HINTERSTOISSER S, LEPETIT V, ILIC S, et al. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]//Asian Conference on Computer Vision. Berlin: Springer, 2012: 548-562.
    [27]
    BRACHMANN E, KRULL A, MICHEL F, et al. Learning 6D object pose estimation using 3D object coordinates[C]//European Conference on Computer Vision. Cham: Springer, 2014: 536-551.
    [28]
    XIAO J X, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2010: 3485-3492.
  • Related Articles

    [1]SUN Yanfeng, DU Pengfei. Deep Clustering Network Based on Graph Relationship Selection[J]. Journal of Beijing University of Technology, 2024, 50(12): 1428-1436. DOI: 10.11936/bjutxb2023060023
    [2]LIU Quanbo, LI Xiaoli, WANG Kang. Desulfurization Process Modeling by Using Deep AttLSTM-based Network[J]. Journal of Beijing University of Technology, 2024, 50(2): 140-151. DOI: 10.11936/bjutxb2023070037
    [3]SUN Enchang, YUAN Yongyi, WU Bing, QU Hanxing, ZHANG Yanhua. Deep Reinforcement Learning and Mobile Communication Resource Management: Algorithms, Progress, and Prospects[J]. Journal of Beijing University of Technology, 2023, 49(1): 71-88. DOI: 10.11936/bjutxb2021040026
    [4]HOU Yue, ZHANG Huiting, GAO Zhiwei, WANG Dawei, LIU Pengfei, OESER Markus, WANG Linbing, CHEN Ning. Research and Comparison of Intelligent Detection Methods of Pavement Distress Based on Deep Data Augmentation[J]. Journal of Beijing University of Technology, 2022, 48(6): 622-634. DOI: 10.11936/bjutxb2021110004
    [5]LU Huimin, YANG Shuo. Three-dimensional Object Detection Algorithm Based on Deep Neural Networks for Automatic Driving[J]. Journal of Beijing University of Technology, 2022, 48(6): 589-597. DOI: 10.11936/bjutxb2021100027
    [6]XIA Heng, TANG Jian, QIAO Junfei. Review of Deep Forest[J]. Journal of Beijing University of Technology, 2022, 48(2): 182-196. DOI: 10.11936/bjutxb2020120017
    [7]JI Qiang, SUN Yanfeng, HU Yongli, YIN Baocai. Review of Clustering With Deep Learning[J]. Journal of Beijing University of Technology, 2021, 47(8): 912-924. DOI: 10.11936/bjutxb2021010013
    [8]MAO Dianhui, LI Ziqin, CAI Qiang, XUE Ziyu. Tickling Deep Differential Privacy Protection Method Based on DCGAN[J]. Journal of Beijing University of Technology, 2018, 44(6): 870-877. DOI: 10.11936/bjutxb2017070017
    [9]SUN Yan-feng, QI Guang-lei, HU Yong-li, ZHAO Lu. Deep Convolution Neural Network Recognition Algorithm Based on Improved Fisher Criterion[J]. Journal of Beijing University of Technology, 2015, 41(6): 835-841. DOI: 10.11936/bjutxb2014110040
    [10]YIN Bao-cai, WANG Wen-tong, WANG Li-chun. Review of Deep Learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. DOI: 10.11936/bjutxb2014100026
  • Cited by

    Periodical cited type(5)

    1. 江训利,何必想,刘港归,陈琪,王朝晖,黄志义. 基于塑性活化能的沥青混合料抗车辙性能优化. 北京工业大学学报. 2024(04): 486-497 . 本站查看
    2. 陈柳华. 表面修饰硅藻土改性生物沥青的流变与微观性能研究. 西部交通科技. 2024(10): 20-22+161 .
    3. 高俊锋,周奕池,储晨骏,黄诗迪. 生物沥青的制备方法与性能研究进展. 石油炼制与化工. 2024(11): 162-170 .
    4. 李强,钱普舟,马丁红,安丰伟. 偶联改性SBS复合改性沥青性能试验研究. 交通科技. 2023(06): 125-128 .
    5. 宋昭睿. 改性生物沥青混合料路用性能试验研究. 黄河水利职业技术学院学报. 2022(04): 38-42 .

    Other cited types(1)

Catalog

    Article views (57) PDF downloads (17) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return