• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
PAN Shengli, HE Huiyu, CHENG Zhaochen, XIN Litao, LI Biao, WANG Pu. Super-elastic Liquid Metal-based Triboelectric Fibers and Textiles[J]. Journal of Beijing University of Technology, 2025, 51(3): 327-336. DOI: 10.11936/bjutxb2023030021
Citation: PAN Shengli, HE Huiyu, CHENG Zhaochen, XIN Litao, LI Biao, WANG Pu. Super-elastic Liquid Metal-based Triboelectric Fibers and Textiles[J]. Journal of Beijing University of Technology, 2025, 51(3): 327-336. DOI: 10.11936/bjutxb2023030021

Super-elastic Liquid Metal-based Triboelectric Fibers and Textiles

More Information
  • Received Date: March 16, 2023
  • Revised Date: June 06, 2023
  • To solve the problems of preparation process, flexibility, and flexibility of friction electric fibers, super-elastic triboelectric fibers were prepared by using an extrusion-filling method. The liquid metal EGaIn and thermoplastic elastomer material were used as the conductive electrode and the fiber sleeve, respectively. The fiber could sustain strains up to 2 200% and exhibited high electrical outputs. By using a 5 cm long fiber as the medium, the fiber can provide an unsaturated average open circuit voltage of 7 V when in contact with paper; and the instantaneous power density of 1.6 μW/m was obtained with an external load resistance of 200 MΩ. Weaning the fiber into an 8 cm×8 cm textile, the max electrical outputs were 120 V, 280 nA, 28 nC. Results show that the extrusion-filling technology is an effective way to develop stretchable triboelectric fibers. The super-elastic fibers in this work have the potential for multi-functional wearable smart textiles applications.

  • [1]
    FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. doi: 10.1016/j.nanoen.2012.01.004
    [2]
    CHANDRASHEKAR B N, DENG B, SMITHA A S, et al. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator[J]. Advanced Materials, 2015, 27(35): 5210-5216. doi: 10.1002/adma.201502560
    [3]
    SHI Q F, DONG B W, HE T Y, et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things[J]. InfoMat, 2020, 2(6): 1131-1162. doi: 10.1002/inf2.12122
    [4]
    WANG W, YU A, ZHAI J, et al. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing[J]. Advanced Fiber Materials, 2021, 3(2): 394-412.
    [5]
    WANG Z L, CHEN J, LIN L. Progress in triboelectric nano-generators as a new energy technology and self-powered sensors[J]. Energy Environmetal Science, 2015, 8: 2250-2282. doi: 10.1039/C5EE01532D
    [6]
    PARIDA K, THANGAVEL G, CAI G, et al. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator[J]. Nature Communications, 2019, 10: 2158. doi: 10.1038/s41467-019-10061-y
    [7]
    PARANDEH S, ETEMADI N, KHARAZIHA M, et al. Advances in triboelectric nanogenerators for self-powered regenerative medicine[J]. Advanced Fiber Materials, 2021, 31(47): 2105169.
    [8]
    HAIGHT R, HAENSCH W, FRIEDMAN D. Solar-powering the internet of things[J]. Science, 2016, 353(8): 124-125.
    [9]
    LIPOMI D J, VOSGUERITCHIAN M, TEE B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6: 788-792. doi: 10.1038/nnano.2011.184
    [10]
    ROGERS J A, SOMEYA T, HUANG Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(26): 1603-1607.
    [11]
    SUN H, ZHANG Y, ZHANG J, et al. Energy harvesting and storage in 1D devices[J]. Nature Reviews Materials, 2017, 2: 17023. doi: 10.1038/natrevmats.2017.23
    [12]
    LAI Y C, DENG J, ZHANG S L, et al. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing[J]. Advanced Fiber Materials, 2017, 27(1): 1604462.
    [13]
    YAN W, PAGE A, DANG T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles[J]. Advanced Materials, 2019(31): 1802348.
    [14]
    LEBER A, DONG C Q, CHANDRAN R, et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations[J]. Nature Electronics, 2020, 31(1): 316-326.
    [15]
    PENG X, DONG K, YE C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020, 6: eaba9624. doi: 10.1126/sciadv.aba9624
    [16]
    ZHENG Q, SHI B, FAN F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Advanced Materials, 2014, 26(33): 5851-5856. doi: 10.1002/adma.201402064
    [17]
    LAI Y C, LU H W, WU H M, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors[J]. Advanced Energy Mater, 2021, 11(18): 2100411. doi: 10.1002/aenm.202100411
    [18]
    ZHENG L J, ZHU M M, WU B H, et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Science Advances, 2021, 7: eabg4041 doi: 10.1126/sciadv.abg4041
    [19]
    WANG Z, AN J, NIE J, et al. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized Medicare[J]. Advanced Materials, 2020, 32(32): 2001466. doi: 10.1002/adma.202001466
    [20]
    NING C A, DONG K, CHENG R W, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Fiber Materials, 2021, 31(4): 2006679.
    [21]
    WU C, WANG A C, DING W, et al. Triboelectric nanogenerator: a foundation of the energy for the new era[J]. Advanced Energy Materials, 2019, 9(1): 1802906. doi: 10.1002/aenm.201802906
    [22]
    DONG K, DENG J, ZI Y, et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors[J]. Advanced Materials, 2017, 29(38): 1702648. doi: 10.1002/adma.201702648
    [23]
    GONG W, HOU C, ZHOU J, et al. Continuous and scalable manufacture of amphibious energy yarns and textiles[J]. Nature Communications, 2019, 10: 868. doi: 10.1038/s41467-019-08846-2
    [24]
    LAI Y C, DENG J A, ZHANG S L, et al. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth based self-powered human-interactive and biomedical sensing[J]. Advanced Fiber Materials, 2017, 27(1): 1604462.
    [25]
    ZHANG D, YANG W F, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021, 33(26): 2100782. doi: 10.1002/adma.202100782
    [26]
    LAN B X, WU F, CHENG Y, et al. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training[J]. Nano Energy, 2022, 102: 107737. doi: 10.1016/j.nanoen.2022.107737
    [27]
    丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件[J]. 物理学报, 2020, 69: 170202. doi: 10.7498/aps.69.20200867

    DING Y F, CHEN X Y. Wearable energy device based on friction nanogenerator[J]. Acta Physica Sinica, 2020, 69: 170202. (in Chinese) doi: 10.7498/aps.69.20200867
    [28]
    LIN Y L, COOPER C, WANG M, et al. Handwritten, soft circuit boards and antennas using liquid metal nanoparticles[J]. Small, 2015, 11(48): 6397-6403. doi: 10.1002/smll.201502692
    [29]
    SODHI R, BRODERSEN P, CADEMARTIR L, et al. Surface and buried interface layer studies on challenging structures as studied by ARXPS[J]. Surface and Interface Analysis, 2017, 49(13): 1309-1315. doi: 10.1002/sia.6270
    [30]
    CADEMARTIRI L, THUO M, NIJHUIS, C, et al. Electrical resistance of AgTS-S(CH2)n-1 CH3//Ga2O3/EGaIn tunneling junctions[J]. Journal of Physical Chemistry C, 2012, 116(20): 10848-10860. doi: 10.1021/jp212501s
    [31]
    SANGEETH C S, WAN A, NIJHUIS C A. Equivalent circuits of a self-assembled monolayer-based tunnel junction determined by impedance spectroscopy[J]. Journal of the American Chemical Society, 2014, 136(31): 11134-11144. doi: 10.1021/ja505420c
    [32]
    XU C, WANG A C, ZOU H Y, et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification[J]. Advanced Materials, 2018, 30(38): 1803968. doi: 10.1002/adma.201803968
    [33]
    DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials, 2020, 32 (5): 1902549. doi: 10.1002/adma.201902549
    [34]
    XU C, ZI Y, WANG A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials, 2018, 30(15): 1706790. doi: 10.1002/adma.201706790
    [35]
    WANG Z L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82. doi: 10.1016/j.mattod.2016.12.001
    [36]
    HU S M, HAN J, SHI Z J, et al. Biodegradable, super strong, and conductive cellulose macro fibers for fabric based triboelectric nanogenerator[J]. Nano-Micro Lett, 2022, 14: 115. doi: 10.1007/s40820-022-00858-w
    [37]
    NIU S M, WANG S H, LIN L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy and Environmental Science, 2013, 12: 3576-3583.
    [38]
    WANG Z L. On the first principle theory of nanogenerators from Maxwell's equations[J]. Nano Energy, 2020, 68: 104272. doi: 10.1016/j.nanoen.2019.104272
    [39]
    ZHENG Z P, YU D, GUO Y P, et al. Dielectric modulated glass fiber fabric-based single electrode triboelectric nanogenerator for efficiently biomechanical energy harvesting[J]. Advanced Fiber Materials, 2021 31(32): 2102431.
    [40]
    DONG C C, AADREAS L B, TAPAJYOTI D G, et al. High-effciency super-elastic liquid metal based triboelectric fibers and textiles[J]. Nature Communications, 2020, 11: 3537. doi: 10.1038/s41467-020-17345-8
  • Related Articles

    [1]MAO Qianjin, ZENG Guodong, MEI Yan, CUI Suping. In Situ Growth of ZnO Nanofilms on Fabrics and Their Antibacterial Properties[J]. Journal of Beijing University of Technology, 2025, 51(4): 367-374. DOI: 10.11936/bjutxb2023060017
    [2]ZHU Mankang, MA Bingchuang, ZHENG Mupeng, HOU Yudong. Influence of Sintering Temperature on Electrical Properties of CuAlO2 Ceramics[J]. Journal of Beijing University of Technology, 2019, 45(2): 186-190. DOI: 10.11936/bjutxb2017110020
    [3]ZANG Huai-quan, LIU Wei-bo, WANG Zhi-yong. Design of the Electricity Enclosed Automobile Transmission Loaded Test-bed Control System[J]. Journal of Beijing University of Technology, 2010, 36(6): 748-753. DOI: 10.3969/j.issn.0254-0037.2010.06.005
    [4]DENG Zong-cai, LI Jian-hui. Flexural Performance of RC Corroded Beams Strengthened With CFRP/AFRP/GFRP Laminated Hybrid Fiber Sheets[J]. Journal of Beijing University of Technology, 2009, 35(3): 338-344. DOI: 10.3969/j.issn.0254-0037.2009.03.009
    [5]Zhang Jie, Zhang Huihui. Design and Study on the Experimental Platform of Electric and Pneumatic Servo System[J]. Journal of Beijing University of Technology, 2000, 26(z1): 1-4. DOI: 10.3969/j.issn.0254-0037.2000.z1.001
    [6]Huang Pengfei, Yin Shuyan, Chen Shujun. A Study on Functions of Output Filter Inductor in Inverter CO2 Gas Shielded Arc Welding Machine[J]. Journal of Beijing University of Technology, 1998, 24(3): 62-66.
    [7]Xu Ningshou. Making Multi-step ahead Predictions for the Discrete-time Linear Stochastic System Output in a Successive One-step Manner[J]. Journal of Beijing University of Technology, 1989, 15(1): 10-17. DOI: 10.3969/j.issn.0254-0037.1989.01.002
    [8]Shou Tao, Xu Ningshou. Multi-step Ahead Prediction of the Multivariable Linear Discrete Stochastic System Output in Succesive One-step Manner[J]. Journal of Beijing University of Technology, 1988, 14(3): 45-54.
    [9]Luo Zhichang, et al, . Pulse Contour Method for the Determination of Cardiac Output and its Application in Clinic Practice[J]. Journal of Beijing University of Technology, 1988, 14(2): 13-21.
    [10]Fang Zhi-zhen. Reading Precision of Electrical Indicating Instrument[J]. Journal of Beijing University of Technology, 1984, 10(4): 119-125.

Catalog

    Article views (686) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return