• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Jun, ZHU Xingguang, ZHANG Yue, XIA Guodong. Wetting Transition on a Hydrophobic Surface With Nano-grooves Under External Electric Field[J]. Journal of Beijing University of Technology, 2024, 50(10): 1162-1169. DOI: 10.11936/bjutxb2023010017
Citation: WANG Jun, ZHU Xingguang, ZHANG Yue, XIA Guodong. Wetting Transition on a Hydrophobic Surface With Nano-grooves Under External Electric Field[J]. Journal of Beijing University of Technology, 2024, 50(10): 1162-1169. DOI: 10.11936/bjutxb2023010017

Wetting Transition on a Hydrophobic Surface With Nano-grooves Under External Electric Field

More Information
  • Received Date: January 11, 2023
  • Revised Date: February 21, 2023
  • In this paper, the transition from Cassie state to Wenzel state of water film at a hydrophobic surface with a nano-groove under the external electric field was studied by using molecular dynamics (MD) simulation method. It is found that there exists an optimal electric field strength, at which the transition of the wetting state can be promoted. For lower or higher electric field strength, it needs a longer time for the transition of the wetting state. Based on the calculation of the droplet contact angle under the electric field, it is found that the external electric field can enhance the surface wettability, which in turn facilitates the transition from the Cassie state to the Wenzel state. On the other hand, the elongation of the droplet along the electric field direction under the influence of the electric field polarization slows down the infiltration of the droplet into the nano-groove. Therefore, with the increase of electric field intensity, the transition time of liquid film wetting state shows a tendency of decreasing and then increasing after a minimum value. This paper reveals the mechanism of the transition of the wetting state on the surface of nanostructures under the influence of the external electric field, which contributes to a deeper understanding of the electrical wetting phenomenon on the surface with microstructures and nanostructures.

  • [1]
    CELIA E, DARMANIN T, TAFFIN DE GIVENCHY E, et al. Recent advances in designing superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2013, 402(2): 1-18.
    [2]
    陈宇, 王亮, 王波. 铝模板诱导玻璃的光学及润湿性能[J]. 北京工业大学学报, 2017, 43(11): 1609-1613. doi: 10.11936/bjutxb20161100008

    CHEN Y, WANG L, WANG B. Optics and wettability of glasses induced by the aluminum template[J]. Journal of Beijing University of Technology, 2017, 43(11): 1609-1613. (in Chinese) doi: 10.11936/bjutxb20161100008
    [3]
    XUE C H, JIA S T, ZHANG J, et al. Large-area fabrication of superhydrophobic surfaces for practical applications: an overview[J]. Science and Technology of Advanced Materials, 2010, 11(3): 033002. doi: 10.1088/1468-6996/11/3/033002
    [4]
    LI H Y, WANG J, XIA G D. Thermal transport through solid-liquid interface: effect of the interfacial coupling and nanostructured surface[J]. Journal of Thermal Science, 2022, 31(4): 1167-1179. doi: 10.1007/s11630-022-1629-2
    [5]
    WANG F, ZHUO Y Z, HE Z W, et al. Dynamic anti-icing surfaces(DAIS)[J]. Advanced Science, 2021, 8(21): 2101163. doi: 10.1002/advs.202101163
    [6]
    SONG Z, CUI Z, LIU Y, et al. Heat transfer and flow characteristics in nanochannels with complex surface topological morphology[J]. Applied Thermal Engineering, 2021, 201(25): 117755.
    [7]
    夏国栋, 王卓, 马丹丹. 双层热源双层通道内流体流动与传热特性[J]. 北京工业大学学报, 2018, 44(3): 455-462. doi: 10.11936/bjutxb2017010038

    XIA G D, WANG Z, MA D D. Flow and heat transfer characteristics in double-layer channel with double heat sources[J]. Journal of Beijing University of Technology, 2018, 44(3): 455-462. (in Chinese) doi: 10.11936/bjutxb2017010038
    [8]
    CASSIE A B D. Contact angles[J]. Disscussions of the Faraday Society, 1948, 3: 11-16. doi: 10.1039/df9480300011
    [9]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial Engineering Chemistry, 2002, 28(8): 988-994.
    [10]
    LU G, WANG X D, DUAN Y Y. A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids[J]. Advances in Colloid and Interface Science, 2016, 7(4): 43-62.
    [11]
    LI X M, REINHOUDT D, CREGO-CALAMA M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36: 1350-1368. doi: 10.1039/b602486f
    [12]
    ZHANG B X, WANG S L, HE X, et al. Statics and dynamics of nanodroplet electrowetting on an isothermally heated nanostructured surface[J]. Journal of Molecular Liquids, 2021, 342: 117468. doi: 10.1016/j.molliq.2021.117468
    [13]
    SHAHIDZADEH N, BONN D, RAGLI K, et al. Sequence of two wetting transitions induced by tuning the hamaker constant[J]. Physical Review Letters, 1998, 80(18): 3992-3995. doi: 10.1103/PhysRevLett.80.3992
    [14]
    BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Advances in Colloid and Interface Science, 2015, 222: 92-103. doi: 10.1016/j.cis.2014.02.009
    [15]
    BORMASHENKO E, POGREB R, STEIN T, et al. Characterization of rough surfaces with vibrated drops[J]. Physical Chemistry Chemical Physics, 2008, 10(27): 4056-4061. doi: 10.1039/b800091c
    [16]
    郑海坤, 张培成, 盛伟, 等. 微纳结构超疏水表面液滴动态润湿特性研究[J]. 工程热物理学报, 2022, 43(5): 1393-1403.

    ZHENG H K, ZHANG P C, SHENG W, et al. Investigation of the droplet dynamic wetting characteristics on micro-nanostructured superhydrophobic surface[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1393-1403. (in Chinese)
    [17]
    ZHANG B X, HE X, WANG S L, et al. Explosive boiling of argon nanofilms in the Wenzel or Cassie state on high- temperature nanopillar-arrayed surfaces[J]. International Journal of Thermal Sciences, 2022, 172: 107282. doi: 10.1016/j.ijthermalsci.2021.107282
    [18]
    LV S H, XIE F F, YANG Y R, et al. Impact regimes of nanodroplets impacting nanopillared surfaces[J]. Physical Review Fluids, 2022, 7: 034203. doi: 10.1103/PhysRevFluids.7.034203
    [19]
    李文, 马骁婧, 徐进良, 等. 纳米结构及浸润性对液滴润湿行为的影响[J]. 物理学报, 2021, 70(12): 294-304.

    LI W, MA X J, XU J L, et al. Effects of base angle and wettability of nanostructures on droplet wetting behaviors[J]. Acta Physica Sinica, 2021, 70(12): 294-304. (in Chinese)
    [20]
    REN W. Wetting transition on patterned surfaces: transition states and energy barriers[J]. Langmuir, 2014, 30(10): 2879-2885. doi: 10.1021/la404518q
    [21]
    PAPATHANASIOU A G. Progress toward reversible electrowetting on geometrically patterned superhydrophobic surfaces[J]. Current Opinion in Colloid and Interface Science, 2018, 36: 70-77. doi: 10.1016/j.cocis.2018.01.008
    [22]
    SETHI K B, GAURAV M. Recent progress in super hydrophobic/hydrophilic self-cleaning surface for various industrial applications: a review[J]. Polymer-Plastics Technology and Engineering, 2018, 57(18): 1932-1952. doi: 10.1080/03602559.2018.1447128
    [23]
    KRUPENKIN T, TAYLOR A, SCHNEIDER T, et al. From rolling ball to complete wetting on dynamically tunable nanostructured surfaces[J]. Langmuir, 2004, 20: 3824-3827. doi: 10.1021/la036093q
    [24]
    宋粉红, 马龙, 范晶, 等. 微纳液滴在粗糙固体壁面上的电润湿特性[J]. 工程热物理学报, 2019, 40(9): 1963-1968.

    SONG F H, MA L, FAN J, et al. Electro-wetting characteristics of a nano-droplet on rough solid substrate[J]. Journal of Engineering Thermophysics, 2019, 40(9): 1963-1968. (in Chinese)
    [25]
    ZONG D Y, YANG Z, DUAN Y Y. Wettability of a nano-droplet in an electric field: a molecular dynamics study[J]. Applied Thermal Engineering, 2017, 122: 71-79. doi: 10.1016/j.applthermaleng.2017.04.064
    [26]
    EDWARDS A M J, BROWN C V, NEWTON M I, et al. Dielectrowetting: the past, present and future[J]. Current Opinion in Colloid and Interface Science, 2018, 36: 38-36.
    [27]
    MUGELE F G, BARET J C. Electrowetting: from basics to applications[J]. Institute of Physics, 2005, 17(28): R705-R744.
    [28]
    SONG F H, LI B Q, LI Y. Dynamic spreading of a nanosized droplet on a solid in an electric field[J]. Physical Chemistry Chemical Physic, 2015, 17(8): 5543-5546. doi: 10.1039/C4CP04913F
    [29]
    ZHANG B X, WANG S L, WANG X D. Wetting transition from the Cassie-Baxter state to the Wenzel state on regularly nanostructured surfaces induced by an electric field[J]. Langmuir, 2019, 35(3): 662-670. doi: 10.1021/acs.langmuir.8b03808
    [30]
    HE X, WANG Y F, ZHANG B X, et al. Effects of nanodroplet sizes on wettability, electrowetting transition, and spontaneous dewetting transition on nanopillar-arrayed surfaces[J]. Langmuir, 2021, 37: 14571-14581. doi: 10.1021/acs.langmuir.1c01807
    [31]
    MIQDAD A M, DATTA S, DAS A K, et al. Effect of electrostatic incitation on the wetting mode of a nano-drop over a pillar-arrayed surface[J]. Royal Society of Chemistry Advances, 2016, 6(111): 110127-110133.
    [32]
    SONG F H, MA L, FAN J, et al. Wetting behaviors of a nano-droplet on a rough solid substrate under perpendicular electric field[J]. Nanomaterials (Basel), 2018, 8(5): 340. doi: 10.3390/nano8050340
    [33]
    BERENDSEN H J C, GRIGERA J R, STRAASTSMA T P. The missing term in effective pair potentials[J]. Journal of Physical Chemistry, 1987, 91(24): 6269-6271. doi: 10.1021/j100308a038
    [34]
    DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. doi: 10.1103/PhysRevB.29.6443
    [35]
    THOMPSON A P, PLIMPTON S J, MATTSON W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions[J]. Journal of Chemical Physics, 2009, 131(15): 154107. doi: 10.1063/1.3245303
    [36]
    MANUKYAN G, OH M J, ENDE V D, et al. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions[J]. Physical Review Letters, 2011, 106: 014501. doi: 10.1103/PhysRevLett.106.014501
  • Related Articles

    [1]SANG Lixia, LEI Lei, CHEN Pingfang, WANG Jun. Interaction of Hydroxylated Anatase TiO2 Surfaces and H2O by Molecular Dynamics Simulation[J]. Journal of Beijing University of Technology, 2020, 46(2): 180-190. DOI: 10.11936/bjutxb2018070010
    [2]ZHANG Wei, WANG Min, SUN Lele. Stiffness Modeling and Analysis Considering Influences of Preload and Contact Angle of a Linear Rolling Guide[J]. Journal of Beijing University of Technology, 2018, 44(1): 56-63. DOI: 10.11936/bjutxb2016100021
    [3]CHEN Yu, WANG Liang, WANG Bo. Optics and Wettability of Glasses Induced by the Aluminum Template[J]. Journal of Beijing University of Technology, 2017, 43(11): 1609-1613. DOI: 10.11936/bjutxb20161100008
    [4]GAN Xinli, ZHENG Nanxiang, CONG Zhuohong. Analysis of Adhesion Between Asphalt and Aggregate Based on the Infiltration Parameters and Surface Energy Theory[J]. Journal of Beijing University of Technology, 2017, 43(9): 1388-1395. DOI: 10.11936/bjutxb2016100069
    [5]MENG Xiang-man, WANG Liang, CHEN Yu, WANG Bo, ZHANG Yong-zhe, YAN Hui. Influence of Sodium Hydroxide Solution on the Optical and Wetting Properties of Borate Silicate Glasses[J]. Journal of Beijing University of Technology, 2015, 41(12): 1911-1914. DOI: 10.11936/bjutxb2015060086
    [6]MA Dong, SONG Xue-mei, CHEN Yu, WANG Bo, ZHANG Yong-zhe, YAN Hui. Effect of Etching Parameters of Silver Template on Optical and Wettability of Glass[J]. Journal of Beijing University of Technology, 2015, 41(12): 1906-1910. DOI: 10.11936/bjutxb2015060084
    [7]HAN Zhi-wu, LÜ You, MA Rong-feng, NIU Shi-chao, REN Lu-quan. Dynamic Performance of Gear Surface With Bionic Micro-morphology[J]. Journal of Beijing University of Technology, 2011, 37(6): 806-810.
    [8]LI Cheng-gui, SHI Zhao-yao. Spectrum Moment Characteristics of 3-D Rough Surface[J]. Journal of Beijing University of Technology, 2003, 29(4): 406-410.
    [9]Xu Hengjun. Review of Research on Laser Surface Treatment[J]. Journal of Beijing University of Technology, 1998, 24(3): 130-136.
    [10]Zhu Chengxing, Shi Shuxin, Li Zhengwei, Feng Jun. Investigation on Quality of Permanen Mold Casting’s Surface on Aluminium Alloy[J]. Journal of Beijing University of Technology, 1990, 16(1): 8-12.

Catalog

    Article views (108) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return