Citation: | WANG Jun, LI Haiyang, XIA Guodong. Numerical Study of the Effects of System Temperature on Heat Transfer at the Solid-Liquid Interface[J]. Journal of Beijing University of Technology, 2024, 50(7): 864-871. DOI: 10.11936/bjutxb2022120006 |
In the present paper, the effect of system temperature and solid-liquid bond strength on the thermal transport has been investigated based on the non-equilibrium molecular dynamics simulations. It is revealed that the interfacial thermal resistance decreases with increasing temperature, and the interfacial thermal resistance of the hydrophilic interface has a weak temperature dependence. The interfacial thermal transport mechanism is analyzed based on the microscale calculation formula of the heat flux. With increasing temperature, both the contributions by the kinetic and virial term can be enhanced. The proportion of the kinetic term increases, while the proportion of the virial term decreases with increasing temperature. For strong interfacial couplings, the virial term can be enhanced, which is the dominate mechanism for the enhanced interfacial heat transfer.
[1] |
ZHANG L Y, XU J L, LEI J P, et al. The connection between wall wettability, boiling regime and symmetry breaking for nanoscale boiling[J]. International Journal of Thermal Sciences, 2019, 145: 106033. doi: 10.1016/j.ijthermalsci.2019.106033
|
[2] |
LU C L, GAO X L, WU J, et al. Heat transfer enhancement analysis of electrohydrodynamic solid-liquid phase change via lattice Boltzmann method[J]. Applied Thermal Engineering, 2021, 194: 117112. doi: 10.1016/j.applthermaleng.2021.117112
|
[3] |
WANG Y, ZHANG G Q, YANG X Q. Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162: 114200. doi: 10.1016/j.applthermaleng.2019.114200
|
[4] |
HUO Y T, RAO Z H. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 91: 374-384. doi: 10.1016/j.ijheatmasstransfer.2015.07.128
|
[5] |
VENTURELLI L, SANTANGELO P E, TARTARINI P. Fuel cell systems and traditional technologies. Part Ⅱ: Experimental study on dynamic behavior of PEMFC in stationary power generation[J]. Applied Thermal Engineering, 2009, 29(17/18): 3469-3475.
|
[6] |
ZHANG H Y, YAN Y, WANG T, et al. Enhanced heat transfer of carbon nanotube nanofluid microchannels applied on cooling gallium arsenide cell[J]. Journal of Thermal Science, 2020, 29(6): 1475-1486. doi: 10.1007/s11630-020-1303-5
|
[7] |
REDDY P, CASTELINO K, MAJUMDAR A. Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion[J]. Applied Physics Letters, 2005, 87(21): 211908. doi: 10.1063/1.2133890
|
[8] |
CAPLAN M E, GIRI A, HOPKINS P E. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces[J]. The Journal of Chemical Physics, 2014, 140(15): 154701. doi: 10.1063/1.4870778
|
[9] |
WANG X, CHENG P, QUAN X J. Molecular dynamics simulations of thermal boundary resistances in a liquid between two solid walls separated by a nano gap[J]. International Communications in Heat and Mass Transfer, 2016, 77: 183-189. doi: 10.1016/j.icheatmasstransfer.2016.08.006
|
[10] |
SONG G, CHEN M. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance[J]. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
|
[11] |
SU R X, ZHANG X. Wettability and surface free energy analyses of monolayer grapheme[J]. Journal of Thermal Science, 2018, 27(4): 359-363. doi: 10.1007/s11630-018-1015-2
|
[12] |
陈宇杰, 宇波, 陶文铨. 亲水/疏水复合凹槽壁面上气泡成核的分子动力学模拟研究[J]. 工程热物理学报, 2021, 42(10): 2615-2624. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202110018.htm
CHEN Y J, YU B, TAO W Q. Molecular dynamics study of bubble nucleation on the substrate with a hydrophilic-hydrophobic composite groove[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2615-2624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202110018.htm
|
[13] |
LI F, WANG J, XIA G D. Enhanced effect of negative differential thermal resistance in nanoscale confined structure with nanopatterned surfaces[J]. The Journal of Physical Chemistry C, 2019, 124(1): 92-98.
|
[14] |
CAO Q, CUI Z, SHAO W. Optimization method for grooved surface structures regarding the evaporation heat transfer of ultrathin liquid films at the nanoscale[J]. Langmuir, 2020, 36(11): 2802-2815. doi: 10.1021/acs.langmuir.9b03989
|
[15] |
XU W, LAN Z, PENG B L, et al. Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface[J]. RSC Advances, 2016, 6(10): 7923-7932. doi: 10.1039/C5RA23836F
|
[16] |
HU M, GOICOCHEA J V, MICHEL B, et al. Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces[J]. Nano Letters, 2010, 10(1): 279-285. doi: 10.1021/nl9034658
|
[17] |
VERA J, BAYAZITOGLU Y. Temperature and heat flux dependence of thermal resistance of water/metal nanoparticle interfaces at sub-boiling temperatures[J]. International Journal of Heat and Mass Transfer, 2015, 86: 433-442. doi: 10.1016/j.ijheatmasstransfer.2015.02.033
|
[18] |
MURAD S, PURI I K. Thermal transport across nanoscale solid-fluid interfaces[J]. Applied Physics Letters, 2008, 92(13): 133105. doi: 10.1063/1.2905281
|
[19] |
MURAD S, PURI I K. Molecular simulation of thermal transport across hydrophilic interfaces[J]. Chemical Physics Letters, 2008, 467(1/2/3): 110-113.
|
[20] |
SONG G, CHEN M. Temperature dependence of thermal resistance at a solid/liquid interface[J]. Molecular Physics, 2013, 111(7): 903-908. doi: 10.1080/00268976.2012.756990
|
[21] |
HADJICONSTANTINOU N G, SWISHER M M. An atomistic model for the thermal resistance of a liquid-solid interface[J]. Journal of Fluid Mechanics, 2022, 934: R2. doi: 10.1017/jfm.2021.1136
|
[22] |
SCHMITT S, VO T, LAUTENSCHLAEGER M P, et al. Molecular dynamics simulation study of heat transfer across solid-fluid interfaces in a simple model system[J]. Molecular Physics, 2022, 120(10): 2057364. doi: 10.1080/00268976.2022.2057364
|
[23] |
AKSOY M M, ALHOSANI M, BAYAZITOGLU Y. Thermal resistance for Au-water and Ag-water interfaces: molecular dynamics simulations[J]. International Journal of Thermophysics, 2021, 42(6): 1-12.
|
[24] |
ALEXEEV D, CHEN J, WALTHER J H, et al. Kapitza resistance between few-layer graphene and water: liquid layering effects[J]. Nano Letters, 2015, 15(9): 5744-5749. doi: 10.1021/acs.nanolett.5b03024
|
[25] |
LI F, WANG J, XIA G D, et al. Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures[J]. Nanoscale, 2019, 11(27): 13051-13057. doi: 10.1039/C9NR01606F
|
[26] |
WANG Y, KEBLINSKI P. Role of wetting and nanoscale roughness on thermal conductance at liquid-solid interface[J]. Applied Physics Letters, 2011, 99(7): 073112. doi: 10.1063/1.3626850
|
[27] |
ACHARYA H, MOZDZIERZ N J, KEBLINSKI P, et al. How chemistry, nanoscale roughness, and the direction of heat flow affect thermal conductance of solid-water interfaces[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1767-1773.
|
[28] |
何雅玲, 曹文, 殷欣, 等. 粗糙壁面间界面换热的分子动力学模拟[J]. 工程热物理学报, 2011, 32(9): 1449-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201109004.htm
HE Y L, CAO W, YIN X, et al. molecular dynamics simulation of heat transfer through interface between rough walls[J]. Journal of Engineering Thermophysics, 2011, 32(9): 1449-1453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201109004.htm
|
[29] |
YANG N, XU X F, ZHANG G, et al. Thermal transport in nanostructures[J]. AIP Advances, 2012, 2(4): 041410. doi: 10.1063/1.4773462
|
[30] |
CHEN Z, JANG W, LI B W, et al. Thermal contact resistance between graphene and silicon dioxide[J]. Applied Physics Letters, 2009, 95(16): 161910. doi: 10.1063/1.3245315
|
[31] |
李海洋, 李凡, 王军, 等. 固液界面中热整流效应及其翻转[J]. 工程热物理学, 2020, 41(11): 2813-2817. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202011029.htm
LI H Y, LI F, WANG J, et al. Thermal rectification and its reversal in solid-liquid interface[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2813-2817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202011029.htm
|
[32] |
RUTKAI G, THOL M, SPAN R, et al. How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?[J]. Molecular Physics, 2017, 115(9/10/11/12): 1104-1121.
|
[33] |
STEPHAN S, STAUBACH J, HASSE H. Review and comparison of equations of state for the Lennard-Jones fluid[J]. Fluid Phase Equilibria, 2020, 523: 112772. doi: 10.1016/j.fluid.2020.112772
|
[34] |
HOHEISEL C. Transport properties of molecular liquids[J]. Physics Reports, 1994, 245(3): 111-157. doi: 10.1016/0370-1573(94)90075-2
|
[35] |
LI Z G. Surface effects on friction-induced fluid heating in nanochannel flows[J]. Physical Review E, 2009, 79(2): 026312. doi: 10.1103/PhysRevE.79.026312
|
[36] |
HIPPLER H. Collisional deactivation of vibrationally highly excited polyatomic molecules. Ⅱ. Direct observations for excited toluene[J]. The Journal of Chemical Physics, 1983, 78(11): 6709-6717. doi: 10.1063/1.444670
|
[37] |
TORⅡ D, OHARA T, ISHIDA K. Molecular-scale mechanism of thermal resistance at the solid-liquid interfaces: influence of interaction parameters between solid and liquid molecules[J]. Journal of Heat Transfer, 2010, 132(1): 012402. doi: 10.1115/1.3211856
|
[38] |
LI H Y, WANG J, XIA G D. Thermal transport through solid-liquid interface: effect of the interfacial coupling and nanostructured surfaces[J]. Journal of Thermal Science, 2022, 31(4): 1167-1179. doi: 10.1007/s11630-022-1629-2
|
[39] |
FUJIWARA K, SHIBAHARA M. Detection of heat flux at single-atom scale in a liquid-solid interfacial region based on classical molecular dynamics[J]. Applied Physics Letters, 2019, 114(1): 011601. doi: 10.1063/1.5062589
|
[40] |
ZHOU W B, HAN D M, MA H L, et al. Molecular dynamics study on enhanced nucleate boiling heat transfer on nanostructured surfaces with rectangular cavities[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122814. doi: 10.1016/j.ijheatmasstransfer.2022.122814
|
[41] |
CHEN Y J, YU B, ZOU Y, et al. Molecular dynamics studies of bubble nucleation on a grooved substrate[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119850. doi: 10.1016/j.ijheatmasstransfer.2020.119850
|
[42] |
YIN X Y, HU C Z, BAI M L, et al. Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles[J]. International Journal of Multiphase Flow, 2019, 115: 9-18. doi: 10.1016/j.ijmultiphaseflow.2019.03.022
|