• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZHANG Ming, ZHANG Chi, WANG Chao, PENG Kai, LI Sainan, MA Linhao, WANG Ruzhi. First-principles of Electronic Structure and Magnetism of Ruddlesden-Popper Layered Perovskite Bi8Ba4Mn8O28[J]. Journal of Beijing University of Technology, 2024, 50(6): 665-673. DOI: 10.11936/bjutxb2022100003
Citation: ZHANG Ming, ZHANG Chi, WANG Chao, PENG Kai, LI Sainan, MA Linhao, WANG Ruzhi. First-principles of Electronic Structure and Magnetism of Ruddlesden-Popper Layered Perovskite Bi8Ba4Mn8O28[J]. Journal of Beijing University of Technology, 2024, 50(6): 665-673. DOI: 10.11936/bjutxb2022100003

First-principles of Electronic Structure and Magnetism of Ruddlesden-Popper Layered Perovskite Bi8Ba4Mn8O28

More Information
  • Received Date: October 05, 2022
  • Revised Date: November 07, 2022
  • Available Online: May 08, 2024
  • The electronic structure and magnetic properties of the Ruddlesden-Popper (RP) layered perovskite Bi8Ba4Mn8O28 were investigated by using the projector augmented wave (PAW) pseudopotentials method based on the density functional theory. Due to the substitution of Ba in the A site, the rotation and tilt of the MnO6 octahedra could be approved, and their impact on the electronic structure and magnetic properties were also discussed. The generalized gradient approximation calculation with the correction of the onsite Coulomb interaction (GGA+U) showed that the ground state of Bi8Ba4Mn8O28 is a ferromagnetic half-metal with a half-metallic gap of 3.07 eV and a total magnetic moment of 31μB. The magnetic moment of Bi8Ba4Mn8O28 is mainly contributed by the magnetic moment of Mn atoms, while the magnetic moments of Bi, Ba, and O atoms are relatively small. The half-metallicity is mainly due to the large exchange splitting between the spin-up and spin-down electrons of Mn 3d states. When the lattice constants vary in a wide range of -10% to 14%, the half-metallicity can be maintained and the total magnetic moment of the unit cell is always kept at 31μB.

  • [1]
    LIU W Q, WONG P K J, XU Y B. Hybrid spintronic materials: growth, structure and properties[J]. Progress in Materials Science, 2019, 99: 27-105. doi: 10.1016/j.pmatsci.2018.08.001
    [2]
    ŽUTIĆ I, FABIAN J, DAS SARMA S. Spintronics: fundamentals and applications[J]. Reviews of Modern Physics, 2004, 76(2): 323-410. doi: 10.1103/RevModPhys.76.323
    [3]
    WOLF S A, AWSCHALOM D D, BUHRMAN R A, et al. Spintronics: a spin-based electronics vision for the future[J]. Science, 2001, 294(5546): 1488-1495. doi: 10.1126/science.1065389
    [4]
    LI H P, GE Z Z, SUN A, et al. A half-metallic ferrimagnet of CeCu3Cr4O12 with 4f itinerant electron[J]. Applied Physics Letters, 2020, 117(13): 132404. doi: 10.1063/5.0020199
    [5]
    BALASUBRAMANIAN S, SHOBANA P D, SRINIVASAN M, et al. Ab-initio method to investigate perovskites BiXO3(X=Be, Ca, Mg, Na, K, Li) for spintronics applications[J]. Solid State Sciences, 2022, 126: 106839. doi: 10.1016/j.solidstatesciences.2022.106839
    [6]
    LIU Z H, ZHANG S K, WANG X, et al. Realization of a half metal with a record-high curie temperature in perovskite oxides[J]. Advanced Materials, 2022, 34(17): 2200626. doi: 10.1002/adma.202200626
    [7]
    DE GROOT R A, MUELLER F M, ENGEN P G V, et al. New class of materials: half-metallic ferromagnets[J]. Physical Review Letters, 1983, 50(25): 2024-2027. doi: 10.1103/PhysRevLett.50.2024
    [8]
    WURMEHL S, FECHER G H, KANDPAL H C, et al. Investigation of Co+FeSi: the Heusler compound with highest Curie temperature and magnetic moment[J]. Applied Physics Letters, 2006, 88(3): 032503. doi: 10.1063/1.2166205
    [9]
    GALANAKIS I, DEDERICHS P H, PAPANIKOLAOU N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys[J]. Physical Review B, 2002, 66(13): 134428. doi: 10.1103/PhysRevB.66.134428
    [10]
    GALANAKIS I, ŞAŞıǦOLU E. High TC half-metallic fully-compensated ferrimagnetic Heusler compounds[J]. Applied Physics Letters, 2011, 99(5): 052509. doi: 10.1063/1.3619844
    [11]
    LEWIS S P, ALLEN P B, SASAKI T. Band structure and transport properties of CrO2[J]. Physical Review B, 1997, 55(16): 10253-10260. doi: 10.1103/PhysRevB.55.10253
    [12]
    SZOTEK Z, TEMMERMAN W M, SVANE A, et al. Electronic structure of half-metallic double perovskites[J]. Physical Review B, 2003, 68(10): 104411. doi: 10.1103/PhysRevB.68.104411
    [13]
    KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure[J]. Nature, 1998, 395(6703): 677-680. doi: 10.1038/27167
    [14]
    BENEDEK N A, RONDINELLI J M, DJANI H, et al. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments[J]. Dalton Transactions, 2015, 44(23): 10543-10558. doi: 10.1039/C5DT00010F
    [15]
    BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling[J]. Physical Review Letters, 2011, 106(10): 107204. doi: 10.1103/PhysRevLett.106.107204
    [16]
    LIU X Q, WU S Y, ZHU X L, et al. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures[J]. Acta Physica Sinica, 2018, 67(15): 107503.
    [17]
    张铭, 王昭辉, 楚上杰, 等. 碱土金属掺杂对BiFeO3陶瓷多铁性的影响[J]. 北京工业大学学报, 2017, 43(10): 1590-1595. doi: 10.11936/bjutxb2016110021

    ZHANG M, WANG Z H, CHU S J, et al. Effect of alkaline-earth metal ions doping on the multiferroic of BiFeO3 ceramics[J]. Journal of Beijing University of Technology, 2017, 43(10): 1590-1595. (in Chinese) doi: 10.11936/bjutxb2016110021
    [18]
    严辉, 孟琦, 韩昌报, 等. 钙钛矿太阳电池稳定性研究进展[J]. 北京工业大学学报, 2019, 45(11): 1147-1163. doi: 10.11936/bjutxb2019060005

    YAN H, MENG Q, HAN C B, et al. Research progress on stability of perovskite solar cells[J]. Journal of Beijing University of Technology, 2019, 45(11): 1147-1163. (in Chinese) doi: 10.11936/bjutxb2019060005
    [19]
    韩晓东, 王凯文, 严铮洸, 等. 有机无机钙钛矿薄膜的间歇式退火和光电性能[J]. 北京工业大学学报, 2019, 45(4): 395-404. doi: 10.11936/bjutxb2018040015

    HAN X D, WANG K W, YAN Z G, et al. Organic-inorganic hybrid perovskite films with enhanced micro-structure and photoelectric properties via intermittent annealing method[J]. Journal of Beijing University of Technology, 2019, 45(4): 395-404. (in Chinese) doi: 10.11936/bjutxb2018040015
    [20]
    黄庆, 刘义为, 丘鞍峻, 等. Co系钙钛矿化合物的CO催化氧化与气敏性能[J]. 北京工业大学学报, 1993, 19(4): 121-126. https://journal.bjut.edu.cn/bjgydxxb/article/id/bf666e4c-f2ba-4cce-903d-46cc4819f048

    HUANG Q, LIU Y W, QIU A J, et al. Properties of catalytic oxidation and gas sensitivity to CO in Co system perovskite type catalysts[J]. Journal of Beijing University of Technology, 1993, 19(4): 121-126. (in Chinese) https://journal.bjut.edu.cn/bjgydxxb/article/id/bf666e4c-f2ba-4cce-903d-46cc4819f048
    [21]
    黄庆, 吴南, 陈强, 等. 锰系钙钛矿型氧化物的催化性质及耐SO2性能[J]. 北京工业大学学报, 1992, 18(1): 83-88. https://journal.bjut.edu.cn/bjgydxxb/article/id/0c4e9a85-a530-45ed-8572-014feb281fef

    HUANG Q, WU N, CHEN Q, et al. Catalytic properties and SO2 resistance of Mn-based perofskite type oxides[J]. Journal of Beijing University of Technology, 1992, 18(1): 83-88. (in Chinese) https://journal.bjut.edu.cn/bjgydxxb/article/id/0c4e9a85-a530-45ed-8572-014feb281fef
    [22]
    侯育冬, 赵海燕, 郑木鹏, 等. BSPT基高温压电材料: 机遇与挑战[J]. 北京工业大学学报, 2020, 46(6): 664-679. doi: 10.11936/bjutxb2020030001

    HOU Y D, ZHAO H Y, ZHENG M P, et al. BSPT-based high temperature piezoelectric materials: opportunities and challenges[J]. Journal of Beijing University of Technology, 2020, 46(6): 664-679. (in Chinese) doi: 10.11936/bjutxb2020030001
    [23]
    MATSUNO J, OKIMOTO Y, FANG Z, et al. Metallic ferromagnet with square-lattice CoO2 sheets[J]. Physical Review Letters, 2004, 93(16): 167202. doi: 10.1103/PhysRevLett.93.167202
    [24]
    SUN Z, WANG Q, DOUGLAS J F, et al. Minority-spin t2g states and the degree of spin polarization in ferromagnetic metallic La2-2xSr1+2xMn2O7 (x=0.38)[J]. Scientific Reports, 2013, 3(1): 3167. doi: 10.1038/srep03167
    [25]
    GHIMIRE M P, THAPA R K, RAI D P, et al. Half metallic ferromagnetism in tri-layered perovskites Sr4T3O10(T=Co, Rh)[J]. Journal of Applied Phsics, 2015, 117(6): 063903. doi: 10.1063/1.4907933
    [26]
    KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [27]
    BLOCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979. doi: 10.1103/PhysRevB.50.17953
    [28]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
    [29]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [30]
    PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces[J]. Phys Rev Lett, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [31]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [32]
    DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. doi: 10.1103/PhysRevB.57.1505
    [33]
    TRIMARCHI G, BINGGELI N. Structural and electronic properties of LaMnO3 under pressure: anab initio LDA+U study[J]. Physical Review B, 2005, 71(3): 035101(035101-035109).
    [34]
    BENEDEK N A, FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling[J]. Phys Rev Lett, 2011, 106(10): 107204. doi: 10.1103/PhysRevLett.106.107204
    [35]
    ZHANG J T, SHEN X, WANG Y, et al. Design of two-dimensional multiferroics with direct polarization-magnetization coupling[J]. Phys Rev Lett, 2020, 125(1): 017601. doi: 10.1103/PhysRevLett.125.017601
    [36]
    ZHOU Y, CHEN Z F, WU Z S, et al. Hybrid improper ferroelectricity and magnetoelectric coupling in a two-dimensional perovskite oxide[J]. Phys Rev B, 2021, 103(22): 224409. doi: 10.1103/PhysRevB.103.224409
    [37]
    CHEN B H, LIU X Q, CHEN X M. Hybrid improper ferroelectricity and pressure-induced enhancement of polarization in Ba3Ce2O7 predicted by a first-principles calculation[J]. Physical Review Materials, 2020, 4(7): 074407. doi: 10.1103/PhysRevMaterials.4.074407
    [38]
    DAI D D, WHANGBO M H. Spin-Hamiltonian and density functional theory descriptions of spin exchange interactions[J]. Journal of Chemical Physics, 2001, 114(7): 2887-2893. doi: 10.1063/1.1342758
    [39]
    LAMPIS N, FRANCHINI C, SATTA G, et al. Electronic structure of PbFe1/2Ta1/2O3: crystallographic ordering and magnetic properties[J]. Physical Review B, 2004, 69(6): 064412. doi: 10.1103/PhysRevB.69.064412
    [40]
    DAI D, WHANGBO M H. Spin-Hamiltonian and density functional theory descriptions of spin exchange interactions[J]. The Journal of Chemical Physics, 2001, 114(7): 2887-2893. doi: 10.1063/1.1342758

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return