• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
HE Zheng, ZHAO Nan, LI Jie, CHEN Hanghang, FU Wei, GU Jian, HAN Honggui, LIU Zheng. Decision-making for Membrane Fouling Based on Knowledge Fuzzy Transfer in Municipal Wastewater Treatment[J]. Journal of Beijing University of Technology, 2024, 50(3): 299-306. DOI: 10.11936/bjutxb2022040003
Citation: HE Zheng, ZHAO Nan, LI Jie, CHEN Hanghang, FU Wei, GU Jian, HAN Honggui, LIU Zheng. Decision-making for Membrane Fouling Based on Knowledge Fuzzy Transfer in Municipal Wastewater Treatment[J]. Journal of Beijing University of Technology, 2024, 50(3): 299-306. DOI: 10.11936/bjutxb2022040003

Decision-making for Membrane Fouling Based on Knowledge Fuzzy Transfer in Municipal Wastewater Treatment

More Information
  • Received Date: April 20, 2022
  • Revised Date: December 13, 2022
  • Available Online: January 08, 2024
  • A decision-making method, based on a knowledge fuzzy transfer, was proposed to solve the problem of membrane fouling in wastewater treatment process. First, based on the data and experience collected from a real wastewater treatment process, the knowledge of membrane fouling decision-making was expressed in the form of fuzzy rules. Second, a knowledge reconstruction mechanism (KRM) was proposed to complete the knowledge reconstruction by balancing the matching accuracy and diversity between the source domain and the target domain with knowledge transfer method. Finally, a decision-making model based on data-knowledge-driven interval type-2 fuzzy neural network (DK-IT2FNN) was developed, the model parameters were designed by using fuzzy rules, and the transfer gradient descent algorithm was proposed to adjust the model weight. The decision-making accuracy has been improved. Results show that the proposed method can realize the decision of membrane fouling with high accuracy.

  • [1]
    XIAO K, LIANG S, WANG X M, et al. Current state and challenges of full-scale membrane bioreactor applications: a critical review[J]. Bioresource Technology, 2019, 271: 473-481. doi: 10.1016/j.biortech.2018.09.061
    [2]
    WU M F, CHEN Y F, LIN H J, et al. Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights[J]. Water Research, 2020, 181: 115932. doi: 10.1016/j.watres.2020.115932
    [3]
    VELASCO P, JEGATHEESAN V, THANGAVADIVEL K, et al. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents[J]. Chemosphere, 2021, 278: 130448. doi: 10.1016/j.chemosphere.2021.130448
    [4]
    KONG Z, WU J, RONG C, et al. Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25℃[J]. Bioresource Technology, 2021, 319: 124123. doi: 10.1016/j.biortech.2020.124123
    [5]
    CORPUZ M V A, BOREA L, SENATORE V, et al. Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor[J]. Science of the Total Environment, 2021, 786: 147475. doi: 10.1016/j.scitotenv.2021.147475
    [6]
    CHEN C, SUN M, LIU Z W, et al. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change[J]. Water Research, 2021, 189: 116552. doi: 10.1016/j.watres.2020.116552
    [7]
    SIM Y B, JUNG J H, BAIK J H, et al. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass[J]. Bioresource Technology, 2021, 340: 125562. doi: 10.1016/j.biortech.2021.125562
    [8]
    JI J Y, NI J L, OHTSU A, et al. Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: removal efficiency, biogas, and microbial community[J]. Bioresource Technology, 2021, 336: 125306. doi: 10.1016/j.biortech.2021.125306
    [9]
    QIU G L, CHEN H, RAGHAVAN D S S, et al. Removal behaviors of antibiotics in a hybrid microfiltration-forward osmotic membrane bioreactor for real municipal wastewater treatment[J]. Chemical Engineering Journal, 2021, 417: 129146. doi: 10.1016/j.cej.2021.129146
    [10]
    KONG Z, WU J, RONG C, et al. Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25℃[J]. Science of the Total Environment, 2021, 759: 143526. doi: 10.1016/j.scitotenv.2020.143526
    [11]
    KIM M J, SANKARARAO B, YOO C K. Determination of MBR fouling and chemical cleaning interval using statistical methods applied on dynamic index data[J]. Journal of Membrane Science, 2011, 375: 345-353. doi: 10.1016/j.memsci.2011.04.001
    [12]
    ZHAO B, CHEN H, GAO D K, et al. Cleaning decision model of MBR membrane based on bandelet neural network optimized by improved Bat algorithm[J]. Applied Soft Computing, 2020, 91: 106211. doi: 10.1016/j.asoc.2020.106211
    [13]
    HAN H G, ZHANG H J, LIU Z, et al. Data-driven decision-making for wastewater treatment process[J]. Control Engineering Practice, 2020, 96: 104305. doi: 10.1016/j.conengprac.2020.104305
    [14]
    WANG J, XIN C C, LI J Z, et al. Micro-bubbles enhanced breakage warning for hollow fiber membrane integrity with a low-cost real-time monitoring device[J]. Environmental Science and Pollution Research, 2018, 25: 24639-24652. doi: 10.1007/s11356-018-2415-2
    [15]
    YAO Y Y, XU R H, ZHOU Z B, et al. Linking dynamics in morphology, components, and microbial communities of biocakes to fouling evolution: a comparative study of anaerobic and aerobic membrane bioreactors[J]. Chemical Engineering Journal, 2021, 413: 127483. doi: 10.1016/j.cej.2020.127483
    [16]
    PRADO T, BRUIN A D C, BARBOSA M R F, et al. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system[J]. Science of the Total Environment, 2019, 646: 427-437. doi: 10.1016/j.scitotenv.2018.07.301
    [17]
    STRAUB A P, ASA E, ZHANG W, et al. In-situ graft-polymerization modification of commercial ultrafiltration membranes for long-term fouling resistance in a pilot-scale membrane bioreactor[J]. Chemical Engineering Journal, 2020, 382: 122865. doi: 10.1016/j.cej.2019.122865
    [18]
    CHARFI A, ASLAM M, KIM J. Modelling approach to better control biofouling in fluidized bed membrane bioreactor for wastewater treatment[J]. Chemosphere, 2018, 191: 136-144. doi: 10.1016/j.chemosphere.2017.09.135
    [19]
    SIDDIQUI M A, BISWAL B K, HEYNDERICKX P M, et al. Dynamic anaerobic membrane bioreactor coupled with sulfate reduction (SrDMBR) for saline wastewater treatment[J]. Bioresource Technology, 2022, 346: 126447. doi: 10.1016/j.biortech.2021.126447
    [20]
    SANO T, KOGA Y, ITO H, et al. Effects of structural vulnerability of flat-sheet membranes on fouling development in continuous submerged membrane bioreactors[J]. Bioresource Technology, 2020, 304: 123015. doi: 10.1016/j.biortech.2020.123015
    [21]
    TIAN J, PAN M L, MA Y Q, et al. Effect of membrane fouling on chiral separation[J]. Journal of Membrane Science, 2020, 593: 117352. doi: 10.1016/j.memsci.2019.117352
    [22]
    ZHAO Z T, LOU Y, CHEN Y F, et al. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN)[J]. Bioresource Technology, 2019, 282: 262-268. doi: 10.1016/j.biortech.2019.03.044
    [23]
    ZHOU Z B, TAO Y, ZHANG S Q, et al. Size-dependent microbial diversity of sub-visible particles in a submerged anaerobic membrane bioreactor (SAnMBR): implications for membrane fouling[J]. Water Research, 2019, 159: 20-29. doi: 10.1016/j.watres.2019.04.050
    [24]
    CHEN L, PAN W. Review fuzzy multi-criteria decision-making in construction management using a network approach[J]. Applied Soft Computing, 2021, 102: 107103. doi: 10.1016/j.asoc.2021.107103
    [25]
    HUANG J, ZHOU Z, ZHENG Y, et al. Biological nutrient removal in the anaerobic side-stream reactor coupled membrane bioreactors for sludge reduction[J]. Bioresource Technology, 2020, 295: 122241. doi: 10.1016/j.biortech.2019.122241
    [26]
    MENG S J, FAN W H, LI X M, et al. Intermolecular interactions of polysaccharides in membrane fouling during microfiltration[J]. Water Research, 2018, 143: 38-46. doi: 10.1016/j.watres.2018.06.027
    [27]
    WU X L, HAN H G, QIAO J F. Data-driven intelligent warning method for membrane fouling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3318-3329. doi: 10.1109/TNNLS.2020.3041293
    [28]
    HAN H G, LI M M, QIAO J F, et al. Filter transfer learning algorithm for missing data imputation in wastewater treatment process[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12649-12662. doi: 10.1109/TKDE.2023.3270118
    [29]
    LIAO X J, LIM Y J, KHAYET M, et al. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring[J]. Water Research, 2023, 244: 120511. doi: 10.1016/j.watres.2023.120511
    [30]
    NIU C X, LI X S, DAI R B, et al. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: a critical review[J]. Water Research, 2022, 216: 118299. doi: 10.1016/j.watres.2022.118299
  • Related Articles

    [1]TANG Jian, TIAN Hao, XIA Heng, QIAO Junfei. Interval Type-Ⅱ FNN-based Furnace Temperature Control for MSWI Process[J]. Journal of Beijing University of Technology, 2025, 51(2): 157-172. DOI: 10.11936/bjutxb2023060031
    [2]LI Wenjing, WANG Xiaoxiao. Time Series Prediction Method Based on Simplified LSTM Neural Network[J]. Journal of Beijing University of Technology, 2021, 47(5): 480-488. DOI: 10.11936/bjutxb2020120032
    [3]HAN Honggui, KUAI Xiaodan, ZHANG Lu, QIAO Junfei. Value Assessment Method of Waste Mobile Phones Based on Fuzzy Neural Network[J]. Journal of Beijing University of Technology, 2019, 45(11): 1033-1040. DOI: 10.11936/bjutxb2019070010
    [4]CHU Hong-yan, YANG Jun-jing, CAI Li-gang, SU Lei. Fuzzy Control of Printing Color Based on Genetic Algorithm and Adaptive Adjustment[J]. Journal of Beijing University of Technology, 2013, 39(9): 1303-1310.
    [5]ZHAO Xin, WANG Shi-cheng, YAN Xun-liang, GAO Yun-guang, PU Yuan. Intelligent Adaptive Filtering Algorithm Based on Fuzzy Control Optimized by Genetic Algorithm[J]. Journal of Beijing University of Technology, 2012, 38(12): 1893-1900.
    [6]ZHANG Sen, ZHU Mei-ling, HOU Guang-kui. Improvement Fuzzy kernel Clustering Algorithm[J]. Journal of Beijing University of Technology, 2012, 38(9): 1408-1411.
    [7]HAN Wu-peng, CHEN Wen-kai, LIU Zheng-yao. Application of Fuzzy Wavelet Algorithm to Defect Identification of Textile[J]. Journal of Beijing University of Technology, 2002, 28(1): 8-10.
    [8]Yi Jikai, Sun Hongtao, Chen Shuangye. Fuzzy Control with Genetic Algorithm[J]. Journal of Beijing University of Technology, 2000, 26(1): 21-24.
    [9]Ruan Xiaogang. A Neuro-Fuzzy Computing Model: Configuration, Algorithm and Functions[J]. Journal of Beijing University of Technology, 2000, 26(1): 13-20.
    [10]Yi Jikai, Chen Shuangye, Wang Lin. The Application of Fuzzy Neural Networks to the Temperature Control System[J]. Journal of Beijing University of Technology, 1999, 25(2): 97-102.

Catalog

    Article views (129) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return