Citation: | ZHANG Jianyu, DAI Yang. Application of Improvement Strategy of Bat Algorithm in Remaining Useful Life Prediction of Rolling Bearings[J]. Journal of Beijing University of Technology, 2023, 49(9): 959-969. DOI: 10.11936/bjutxb2021110017 |
To realize bearing life prediction based on vibration data, a health index set containing time, frequency statistical indices and inverse trigonometric ones was constructed in this paper. By comparing the cosine similarity and correlation coefficient with the root mean square index, the index set was screened and reduced. For solving the problem of low accuracy of basic extreme learning machine (ELM) model caused by the random configuration of parameters, a meta-heuristic algorithm represented by bat algorithm (BA) was introduced. As the traditional BA was prone to fall into local optimum, an improved strategy of BA was established, which used levy flight strategy to improve the search ability of BA and enhanced the diversity of the population through competitive learning, thereby improving the search efficiency while ensuring search accuracy. The contribution of the BA improved strategy to the life prediction model was verified using the full life cycle test data of a rolling bearing. Results show that no matter what working conditions the test data set is in, the above prediction framework can obtain a relatively high prediction accuracy, not only keeping a high consistency with the true life curve but also showing stronger generalization performance and stability than the RBF and CS-ELM predictive models.
[1] |
CHEN C C, VACHTSEVANOS G, ORCHARD M. Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach[J/OL]. Mechanical Systems and Signal Processing, 2012, 28: 597-607[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S08883270110040067. DOI: 10.1016/j.ymssp.2011.10.009.
|
[2] |
LU C, CHEN J, HONG R J, et al. Degradation trend estimation of slewing bearing based on LSSVM model[J/OL]. Mechanical Systems and Signal Processing, 2016, 76/77: 353-366[2023-02-20]. https://www.science-direct.com/science/article/pii/S0888327016000820. DOI: 10.1016/j.ymssp.2016.02.031.
|
[3] |
PAN Y, CHEN J, LI X L. Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means[J/OL]. Mechanical Systems and Signal Processing, 2010, 24(2): 559-566[2023-06-20]. https://www.sciencedirect.com/science/article/pii/S0888327009002490. DOI: 10.1016/j.ymssp.2009.07.012.
|
[4] |
JIANG H M, CHEN J, DONG G M. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment[J/OL]. Mechanical Systems and Signal Processing, 2016, 72/73: 184-205[2023-06-20]. https://www.sciencedirect.com/science/article/pii/S088832701500463X. DOI: 10.1016/j.ymssp.2015.10.003.
|
[5] |
QIU H, LEE J, LIN J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J/OL]. Advanced Engineering Informatics, 2003, 17(3/4): 127-140[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S1474034604000114. DOI: 10.1016/j.aei.2004.08.001.
|
[6] |
柏林, 闫康, 刘小峰. 基于状态追踪特征相空间重构的轴承寿命预测方法[J/OL]. 振动与冲击, 2019, 38(23): 119-125. [2023-02-20]. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201923018.htm. DOI: 10.13465/j.cnki.jvs.2019.23.017.
BO L, YAN K, LIU X F. Bearing life prediction method based on phase space reconstruction of state tracking features[J/OL]. Journal of Vibration and Shock, 2019, 38(23): 119-125. [2023-6-20]https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201923018.htm. DOI: 10.13465/j.cnki.jvs.2019.23.017.(inChinese)
|
[7] |
SOUALHI A, MEDJAHER K, CELRC G, et al. Prediction of bearing failures by the analysis of the time series[J/OL]. Mechanical Systems and Signal Processing, 2020, 139: 106607[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S0888327019308283. DOI: 10.1016/j.ymssp.2019.106607.
|
[8] |
PENG K X, JIAO R H, DONG J, et al. A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter[J/OL]. Neurocomputing, 2019, 361: 19-28[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S0925231219310823. DOI: 10.1016/j.neucom.2019.07.075.
|
[9] |
HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J/OL]. International Journal of Machine Learning and Cybernetics, 2011, 2: 107-122[2023-02-20]. https://link.springer.com/article/10.1007/s13042-011-0019-y. DOI: 10.1007/s13042-011-0019-y.
|
[10] |
TOPAL A O, ALTUN O. A novel meta-heuristic algorithm: dynamic virtual bats algorithm[J/OL]. Information Sciences, 2016, 354: 222-235[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S0020025516301888. DOI: 10.1016/j.ins.2016.03.025.
|
[11] |
WANG X W, WANG W, WANG Y. An adaptive bat algorithm[C/OL]//ICIC 2013: Intelligent Computing Theories and Technology. Berlin: Springer, 2013: 216-223[2023-02-20]. https://link.springer.com/chapter/10.1007/978-3-642-39482-9_25. DOI: 10.1007/978-3-642-39482-9_25.Milan.
|
[12] |
ADIS A, MILAN T. Improved bat algorithm applied to multilevel image thresholding[J/OL]. The Scientific World Journal, 2014: 176718[2023-02-20]. https://pubmed.ncbi.nlm.nih.gov/25165733/. DOI: 10.1155/2014/176718.
|
[13] |
ZHU J, CHEN N, SHEN C. A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions[J/OL]. Mechanical Systems and Signal Processing, 2020, 139 : 106602[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S0888327019308234?via%3Dihub. DOI: 10.1016/j.ymssp.2019.106602.
|
[14] |
中国国家标准化管理委员会. 中国标准书号: GB/T 19873.3—2019[S]. 北京: 中国质量标准出版传媒有限公司, 2019.
|
[15] |
KUNDU P, DARPE A K, KULKARNI M S, et al. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J/OL]. Mechanical systems and signal processing, 2019, 134: 106302[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S0888327019305230?via%3Dihub. DOI: 10.1016/j.ymssp.2019.106302.
|
[16] |
YANG X S, DEB S. Cuckoo search via Lévy flights[C/OL]//2009 World congress on nature & biologically inspired computing. Piscataway: IEEE, 2009: 210-214[2023-02-20]. https://ieeexplore.ieee.org/document/5393690. DOI: 10.1109/NABIC.2009.5393690.
|
[17] |
YILMAZ S, KVÇVKSILLE E U. A new modification approach on bat algorithm for solving optimization problems[J/OL]. Applied Soft Computing, 2015, 28: 259-275[2023-02-20]. https://www.sciencedirect.com/science/article/pii/S1568494614005912?via%3Dihub. DOI: 10.1016/j.asoc.2014.11.029.
|
[1] | LI Yue, LIU Yunze. Comparison of Self-consistent Method and Mori Tanaka Method for Predicting Cement Paste Creep[J]. Journal of Beijing University of Technology, 2023, 49(11): 1159-1166. DOI: 10.11936/bjutxb2022110007 |
[2] | ZHANG Jianyu, DAI Yang. Application of Improvement Strategy of Bat Algorithm in Remaining Useful Life Prediction of Rolling Bearings[J]. Journal of Beijing University of Technology, 2023, 49(9): 959-969. DOI: 10.11936/bjutxb2021110017 |
[3] | CAO Kaikai, WANG Jinru, HUANG Fufang. Consistency of Wavelet Estimator for Multiplicative Censored Model[J]. Journal of Beijing University of Technology, 2018, 44(9): 1257-1261. DOI: 10.11936/bjutxb2017050013 |
[4] | WANG Jinru, ZHANG Qingqing, GENG Zijuan. Consistency of D-dimensional Wavelet Estimators[J]. Journal of Beijing University of Technology, 2016, 42(8): 1270-1274. DOI: 10.11936/bjutxb2015090079 |
[5] | WANG Jian-hua, KANG Tai-ti, LIU Zhi-feng, ZHAO Cheng-bin, GU Li-chao. Fault Diagnosis and Prediction of Rolling Bearing Based on the Grey Support Vector Machine Model[J]. Journal of Beijing University of Technology, 2015, 41(11): 1693-1698. DOI: 10.11936/bjutxb2015050114 |
[6] | KOU Jun-ke. Consistency of Wavelet Estimators for a Family of Regression Functions[J]. Journal of Beijing University of Technology, 2015, 41(4): 636-640. DOI: 10.11936/bjutxb2014100045 |
[7] | HAN Pei-sheng, ZHAO Yong, LI Yu. Process-Consistent Access Control System[J]. Journal of Beijing University of Technology, 2010, 36(5): 698-702. |
[8] | LIU Jie, ZHOU Yi-qi, ZHAO Xing-fang. Data Consistency for Complex Product in Collaborative Design HLA-based[J]. Journal of Beijing University of Technology, 2009, 35(12): 1591-1596. |
[9] | LIU Qiang, XUE Liu-gen. Strong Consistency for a Semiparametric Errors-in-variables Under Longitudinal Data[J]. Journal of Beijing University of Technology, 2009, 35(8): 1148-1152. |
[10] | Cheng Weihu. The Regression Method and its Application for Testing Goodness-of-Fit[J]. Journal of Beijing University of Technology, 2000, 26(2): 79-84. |