• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Yingjie, DONG Chen, XIE Yabo, LI Rui, LI Jianrong. Research Progress of CO2 Reduction Catalyzed by MOF-based Materials[J]. Journal of Beijing University of Technology, 2022, 43(3): 261-272, 305. DOI: 10.11936/bjutxb2021100010
Citation: WANG Yingjie, DONG Chen, XIE Yabo, LI Rui, LI Jianrong. Research Progress of CO2 Reduction Catalyzed by MOF-based Materials[J]. Journal of Beijing University of Technology, 2022, 43(3): 261-272, 305. DOI: 10.11936/bjutxb2021100010

Research Progress of CO2 Reduction Catalyzed by MOF-based Materials

More Information
  • Received Date: October 08, 2021
  • Revised Date: November 08, 2021
  • Available Online: August 03, 2022
  • Published Date: March 09, 2022
  • Transformation of CO2 into valued-added products is an indispensable part of accomplishing carbon neutrality. Metal-organic frameworks (MOFs) are believed to be promising catalysts for the utilization of CO2, attributing to their well-defined porous structure, abundant active sites and vastly high tunability. The latest researches of MOF-based functional materials as photo- and electro-catalysts for the reduction of CO2 were summarized in this paper. Novel catalysts were divided into three categories, active MOF, MOF composites and MOF derivatives to facilitate the discussion of enhanced activity. The reason of improvement was ascribed to their well-designed physicochemical properties, especially the property of metal sites, coordination situation and morphology of materials. The future progress of research of MOF-based CO2 reduction catalysts was hence proposed.

  • [1]
    朱跃钊, 廖传华, 王重庆. 二氧化碳的减排与资源化利用[M]. 北京: 化学工业出版社, 2011: 6-22.
    [2]
    骆仲泱. 二氧化碳捕集封存和利用技术[M]. 北京: 中国电力出版社, 2012: 15-75.
    [3]
    ZHANG E, WANG T, YU K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction[J]. Journal of the American Chemical Society 2019, 141(42): 16569-16573. doi: 10.1021/jacs.9b08259
    [4]
    ZHAO C, DAI X, YAO T, et al. Ionic exchange of metal-prganic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society 2017, 139(24): 8078-8081. doi: 10.1021/jacs.7b02736
    [5]
    NGUYEN D L T, KIM Y, HWANG Y J, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. doi: 10.1002/cey2.27
    [6]
    YE L, LIU J, GAO Y, et al. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency[J]. Journal of Materials Chemistry A, 2016(4): 15320-15326.
    [7]
    DENG P, YANG F, WANG Z, et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2020, 59(27): 10807-10813. doi: 10.1002/anie.202000657
    [8]
    GRACIANI J, MUDIYANSELAGE K, XU F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2[J]. Science, 2014, 345(6196): 546-550. doi: 10.1126/science.1253057
    [9]
    OUYANG T, HUANG H, WANG J, et al. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution[J]. Angewandte Chemie International Edition, 2017, 56(3): 738-743. doi: 10.1002/anie.201610607
    [10]
    SCHUCHMANN K, MULLER V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase[J]. Science, 2013, 342(6164): 1382-1385. doi: 10.1126/science.1244758
    [11]
    LI J, YU J, LU W, et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nature Communications, 2013, 4: 1538. doi: 10.1038/ncomms2552
    [12]
    LIU J, CHEN L, CUI H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chemical Society Reviews, 2014, 43(16): 6011-6061. doi: 10.1039/C4CS00094C
    [13]
    CUI Y, XU H, YUE Y, et al. A luminescent mixed-lanthanide metal-organic framework thermometer[J]. Journal of the American Chemical Society, 2012, 134(9): 3979-3982. doi: 10.1021/ja2108036
    [14]
    SMIT B, MAESEN T L M. Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451: 671-678. doi: 10.1038/nature06552
    [15]
    WANG Q, ZHANG Y, LIN H, et al. Recent advances in metal-organic frameworks for photo-/electrocatalytic CO2 Reduction[J]. Chemistry-A European Journal, 2019, 25, 14026-14035. doi: 10.1002/chem.201902203
    [16]
    LEI Z, XUE Y, CHEN W, et al. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion[J]. Advanced Energy Materials, 2018, 8: 1801587. doi: 10.1002/aenm.201801587
    [17]
    WANG W, AN W J, RAMALINGAM B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single Crystals[J]. Journal of the American Chemical Society, 2012, 134(27): 11276-11281. doi: 10.1021/ja304075b
    [18]
    FUJIWARA H, HOSOKAWA, MURAKOSHI K, et al. Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites[J]. The Journal of Physical Chemistry B, 1997, 101(41): 8270-8278. doi: 10.1021/jp971621q
    [19]
    YAN S, OUYANG S, GAO J, et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2[J]. Angewandte Chemie, 2010, 49(36): 6400-6404. doi: 10.1002/anie.201003270
    [20]
    LIU Q, ZHOU Y, KOU J H, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. Journal of the American Chemical Society, 2010, 132(41): 14385-14387. doi: 10.1021/ja1068596
    [21]
    LIU Q, LOW Z X, LI L, et al. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel[J]. Journal of Materials Chemistry A, 2013, 1: 11563-11569. doi: 10.1039/c3ta12433a
    [22]
    YE L, GAO Y, CAO S, et al. Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets[J]. Applied Catalysis B: Environmental, 2018, 227: 54-60. doi: 10.1016/j.apcatb.2018.01.028
    [23]
    FANG Z, LIU T, LIU J, et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(28): 12515-12523. doi: 10.1021/jacs.0c05530
    [24]
    HE T, KONG X, ZHOU J, et al. A practice of reticular chemistry: construction of a Robust mesoporous palladium metal-organic framework via metal metathesis[J]. Journal of the American Chemical Society, 2021, 143(26): 9901-9911. doi: 10.1021/jacs.1c04077
    [25]
    KONG X, HE T, ZHOU J, et al. In situ porphyrin substitution in a Zr(Ⅳ)-MOF for stability enhancement and photocatalytic CO2 reduction[J]. Small, 2021, 17: 2005357. doi: 10.1002/smll.202005357
    [26]
    HAN B, OU X, DENG Z, et al. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity[J]. Angewandte Chemie International Edition, 2018, 57: 16811 -16815. doi: 10.1002/anie.201811545
    [27]
    WANG Y, HUANG N, SHEN J, et al. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2018, 140(1): 38-41. doi: 10.1021/jacs.7b10107
    [28]
    WANG J, QIAO L, NIE H, et al. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction[J]. Nature Communications, 2021, 12: 813. doi: 10.1038/s41467-021-21084-9
    [29]
    KONG Z, LIAO J, DONG Y, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction[J]. ACS Energy Letters, 2018, 3(11): 2656-2662. doi: 10.1021/acsenergylett.8b01658
    [30]
    ZHOU A, DOU Y, ZHAN C, et al. A leaf-branch TiO2/Carbon@MOF composite for selective CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118519. doi: 10.1016/j.apcatb.2019.118519
    [31]
    GUO F, YANG S, LIU Y, et al. Size engineering of metal-organicframework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction[J]. ACS Catalysis, 2019, 9(9): 8464-8470. doi: 10.1021/acscatal.9b02126
    [32]
    BECERRA J, NGUYEN D T, GOPALAKRISHNAN V N, et al. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2[J]. ACS Applied Energy Materials, 2020, 3(8): 7659-7665. doi: 10.1021/acsaem.0c01083
    [33]
    HONG L, GUO R, ZHANG Z, et al. Fabrication of porous octahedron-flowerlike microsphere NH2-UiO-66/CdIn2S4 heterojunction photocatalyst for enhanced photocatalytic CO2 reduction[J]. Journal of CO2 Utilization, 2021, 51: 101650. doi: 10.1016/j.jcou.2021.101650
    [34]
    ZHAO C, ZHOU A, DOU Y, et al. Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction[J]. Chemical Engineering Journal, 2021, 416: 129155. doi: 10.1016/j.cej.2021.129155
    [35]
    WANG S, GUAN B, LOU X W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society, 2018, 140(15): 5037-5040. doi: 10.1021/jacs.8b02200
    [36]
    BACK S, YEOM M S, JUNG Y, et al. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO[J]. ACS Catalysis, 2015, 5: 5089-5096. doi: 10.1021/acscatal.5b00462
    [37]
    BAI X, CHEN W, ZHAO C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56: 12219-12223. doi: 10.1002/anie.201707098
    [38]
    BIRDJA Y Y, GALLENT E P, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4: 732-745. doi: 10.1038/s41560-019-0450-y
    [39]
    WAGNER A, SAHM C D, REISNER E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction[J]. Nature Catalysis, 2020, 3: 775-786. doi: 10.1038/s41929-020-00512-x
    [40]
    ZHU Q, YANG D, LIU H, et al. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 59: 8896-8901. doi: 10.1002/anie.202001216
    [41]
    KANG X, LI L L, SHEVELEVA A, et al. Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode[J]. Nature Communications, 2020, 11: 5464. doi: 10.1038/s41467-020-19236-4
    [42]
    KANG X, WANG B, HU K, et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(41): 17384-17392. doi: 10.1021/jacs.0c05913
    [43]
    DOU S, SONG J, XI S, et al. Boosting electrochemical CO2 reduction on netal-organic frameworks via ligand doping[J]. Angewandte Chemie International Edition, 2019, 58: 4041-4045. doi: 10.1002/anie.201814711
    [44]
    YI J, SI D, XIE R, et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2021, 60: 17108-17114. doi: 10.1002/anie.202104564
    [45]
    MAJIDI L, AHMADIPARIDARI A, SHAN N, et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials[J]. Advanced Materials, 2021, 33: 2004393. doi: 10.1002/adma.202004393
    [46]
    HOD I, SAMPSON M D, DERIA P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2[J]. ACS Catalysis, 2015, 5(11): 6302-6309. doi: 10.1021/acscatal.5b01767
    [47]
    YI J, XIE R, XIE Z, et al. Highly selective CO2 electroreduction to CH4 by In Situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding[J]. Angewandte Chemie International Edition, 2020, 59: 23641-23648. doi: 10.1002/anie.202010601
    [48]
    TAN X, YU C, ZHAO C, et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Applied Materials & Interfaces, 2019, 11: 9904.
    [49]
    GUNTERN Y T, PANKHURST J R, MENSI M, et al. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion[J]. Angewandte Chemie International Edition, 2019, 58: 12632-12639. doi: 10.1002/anie.201905172
    [50]
    ZHANG Y, JIAO L, YANG W, et al. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(14): 7607-7611. doi: 10.1002/anie.202016219
    [51]
    YUAN W, WU J, ZHANG X, et al. In-situ transformation of bismuth metal-organic frameworks for efficiently selective electroreduction of CO2 to formate[J]. Journal of Materials Chemistry A, 2020, 8: 24486. doi: 10.1039/D0TA08092F
  • Related Articles

    [1]ZHANG Ming, LI Sainan, ZHANG Chi, MA Linhao, PENG Kai, YANG Wei. Investigation on Synthesis of BCN/SnO2 Heterojunction and Its Photocatalytic Properties[J]. Journal of Beijing University of Technology, 2024, 50(5): 534-542. DOI: 10.11936/bjutxb2022080006
    [2]JIA Yutong, ZHOU Awu, ZHAO Chen, ZHANG Yan, ZHANG Gengxin, XIE Yabo, LI Jianrong. Research Progress on MOF-based Single-atom Catalysts for CO2 Reduction[J]. Journal of Beijing University of Technology, 2024, 50(2): 216-229. DOI: 10.11936/bjutxb2023070005
    [3]LIU Bin, DONG Chen, SHU Lun, LIU Tongxin, ZHANG Ruili, BAI Jinquan, XIE Linhua, LI Jianrong. Preparation of a MOF-based Mixed Matrix Membrane and Its Nanofiltration Performance[J]. Journal of Beijing University of Technology, 2023, 49(11): 1223-1231. DOI: 10.11936/bjutxb2022030007
    [4]LI Yongli, ZHANG Zhipeng, WANG Jinshu, ZHOU Wenyuan, XU Xiangfeng, LUO Wei, ZHANG Nan. Atomically Dispersed Ag Supported TiO2 Mesoporous Nanobelts for Enhancement of Photocatalytic Oxidation Reactions[J]. Journal of Beijing University of Technology, 2020, 46(10): 1139-1148. DOI: 10.11936/bjutxb2020050005
    [5]JING Lin, WU Chunxiao, DENG Jiguang, LIU Yuxi, DAI Hongxing. Research Progress of Elemental Red Phosphorus Photocatalyst for Energy Conversion and Environmental Remediation[J]. Journal of Beijing University of Technology, 2020, 46(6): 645-654. DOI: 10.11936/bjutxb2019120024
    [6]LU Yuan-wei, SHENG Jian-ping, LÜ Shi-zhan, LI Wen-cai, WANG Ding-hui, MA Zhong-fang. Experimental Research on the Photocatalytic Removal of Formaldehyde[J]. Journal of Beijing University of Technology, 2008, 34(2): 184-188.
    [7]LU Yuan-wei, LI Wen-cai, SHENG Jian-ping, WANG Wei, MA Chong-fang. Enhancement of Photocatalytic Reaction Rate of HCHO Under the Action of Mass Transfer[J]. Journal of Beijing University of Technology, 2007, 33(8): 858-863.
    [8]LU Yuan-wei, MA Zhong-fang, WANG Wei, LI Wen-cai. Study on the Progress of Nanometer Photocatalytic Disinfectant Technology[J]. Journal of Beijing University of Technology, 2006, 32(7): 622-627.
    [9]LU Yuan-wei, MA Chong-fang, ZI Xue-hong, WANG Wei, CHANG Meng-yuan. The Experimental Study on the Reaction Mechanism of Photocatalytic Air Purification[J]. Journal of Beijing University of Technology, 2005, 31(5): 505-508.
    [10]TAN Jian-jun, YAN Hong, ZHANG Dun-xin. Photocatalytic Degradation of Inorganic Nitrogenous Compounds[J]. Journal of Beijing University of Technology, 2002, 28(1): 38-41.
  • Cited by

    Periodical cited type(6)

    1. 贾宇桐,周阿武,赵琛,张岩,张更新,谢亚勃,李建荣. MOF基单原子催化剂用于CO_2还原的研究进展. 北京工业大学学报. 2024(02): 216-229 . 本站查看
    2. 于笑笑,巢艳红,刘海燕,朱文帅,刘植昌. D-A共轭聚合强化光电性能及光催化CO_2转化. 化工进展. 2024(01): 292-301 .
    3. 谢林华,刘玉辉,李茹霞,吕佳澳,谢亚勃,李建荣. 缺陷型巯基功能化MOF的制备及其重金属离子吸附性能. 北京工业大学学报. 2024(10): 1151-1161 . 本站查看
    4. 王忠冬,储巍巍,顾嘉,李为民. 对甲氧基肉桂酸甲酯合成研究进展. 精细石油化工进展. 2023(01): 39-43 .
    5. 陈红梅,杨泽群,陈搏实,李敏瑜,李海龙. CO_2与NO~-_2/NO~-_3电催化合成尿素研究进展. 能源环境保护. 2023(03): 88-97 .
    6. 施秋杰,王吴韬,王成成,段世雄,张呈旭. 钌基双金属聚酞菁电催化析氧性能研究. 贵金属. 2023(02): 43-49 .

    Other cited types(8)

Catalog

    Article views (546) PDF downloads (104) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return