Citation: | JI Changwei, XIN Gu, WANG Shuofeng, YANG Jinxin, MENG Hao, CHANG Ke. Application Progress of Zero Carbon and Carbon-neutral Fuel Internal Combustion Engines[J]. Journal of Beijing University of Technology, 2022, 43(3): 273-291. DOI: 10.11936/bjutxb2021100007 |
With the growing energy demand in transportation, climate change, and energy security issues coming to the fore, the development of renewable fuels is becoming urgent. Hydrogen and ammonia, which are produced from a wide range of sources and do not contain carbon themselves, will play an important role in the future decarbonization process. Various types of alcohols and ethers, which can be obtained from synthesizing the captured CO2 and H2 and biofuels from biomaterials, are effective ways to achieve carbon neutrality and have inherent combustion properties similar to those of gasoline or diesel. The applications of various zero carbon and carbon neural fuels in the spark ignition (SI) and compression ignition (CI) internal combustion engines were reviewed and their effects on engine performance and emission characteristics were analyzed. Hydrogen, a zero-carbon fuel, has good combustion characteristics and can be used alone to achieve zero carbon emissions, and can be an additive to promoting the combustion of the main fuel to reduce carbon emissions. Ammonia, another zero-carbon fuel, has excellent anti-knock properties and can be mixed with hydrogen in engines, however, higher nitrogen oxide (NOx) emissions need to be concerned. Various types of carbon-neutral fuels can be used alone or mixed with hydrogen in engines to attain engine high efficiency and low emissions.
[1] |
SHAFIEE S, TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. doi: 10.1016/j.enpol.2008.08.016
|
[2] |
OIL E. Gas industry development report at home and abroad in 2019[M]. Beijing: Petroleum Industry Press, 2018.
|
[3] |
GIELEN D, BENNACEUR K, BJERG J, et al. Energy technology perspective 2008: scenarios & strategies to 2050[M]. Paris: International Energy Agency, 2010.
|
[4] |
ZHOU S, TONG Q, PAN X, et al. Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: a global perspective[J]. Energy Economics, 2021, 95: 105137. doi: 10.1016/j.eneco.2021.105137
|
[5] |
HUANG M T, ZHAI P M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society[J]. Advances in Climate Change Research, 2021, 12(2): 281-286. doi: 10.1016/j.accre.2021.03.004
|
[6] |
LUND H, ØSTERGAARD P A, CONNOLLY D, et al. Smart energy and smart energy systems[J]. Energy, 2017, 137: 556-565. doi: 10.1016/j.energy.2017.05.123
|
[7] |
WEI Y, WANG Z, WANG H, et al. Compositional data techniques for forecasting dynamic change in China's energy consumption structure by 2020 and 2030[J]. Journal of Cleaner Production, 2021, 284: 124702. doi: 10.1016/j.jclepro.2020.124702
|
[8] |
WANG D, JI C, WANG S, et al. Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2667-2683. doi: 10.1016/j.ijhydene.2020.10.045
|
[9] |
JUNG Y, LEE M J, KIM N I. Direct prediction of laminar burning velocity and quenching distance of hydrogen-air flames using an annular stepwise diverging tube (ASDT)[J]. Combustion and Flame, 2016, 164: 397-399. doi: 10.1016/j.combustflame.2015.12.005
|
[10] |
LIU F, AKRAM M Z, WU H. Hydrogen effect on lean flammability limits and burning characteristics of an isooctane-air mixture[J]. Fuel, 2020, 266: 117144. doi: 10.1016/j.fuel.2020.117144
|
[11] |
LOHSE-BUSCH H, WALLNER T, SHIDORE N. Efficiency-optimized operating strategy of a supercharged hydrogen-powered four-cylinder engine for hybrid environments[C]//SAE Technical Paper. Detroit: SAE International, 2007: 2007-01-2046.
|
[12] |
VERHELST S, WALLNER T. Hydrogen-fueled internal combustion engines[J]. Progress in Energy Combustion Science, 2009, 35(6): 490-527. doi: 10.1016/j.pecs.2009.08.001
|
[13] |
VERHELST S, MAESSCHALCK P, ROMBAUT N, et al. Increasing the power output of hydrogen internal combustion engines by means of supercharging and exhaust gas recirculation[J]. International Journal of Hydrogen Energy, 2009, 34(10): 4406-4412. doi: 10.1016/j.ijhydene.2009.03.037
|
[14] |
杨振中, 秦朝举, 张卫正, 等. 柴油引燃直线氢内燃机稀薄燃烧特性研究[J]. 西安交通大学学报, 2017, 51(5): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201705005.htm
YANG Z Z, QIN C J, ZHANG W Z, et al. Diesel pilot-lgnited lean combustion characteristics of a linear hydrogenengine[J]. Journal of Xi'an Jiaotong University, 2017, 51(5): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201705005.htm
|
[15] |
MA F, LIU H, WANG Y, et al. Combustion and emission characteristics of a port-injection HCNG engine under various ignition timings[J]. International Journal of Hydrogen Energy, 2008, 33(2): 816-822. doi: 10.1016/j.ijhydene.2007.09.047
|
[16] |
XU P, JI C, WANG S, et al. Effects of direct water injection on engine performance in engine fueled with hydrogen at varied excess air ratios and spark timing[J]. Fuel, 2020, 269: 117209. doi: 10.1016/j.fuel.2020.117209
|
[17] |
WAKAYAMA N, MORIMOTO K, KASHIWAGI A, et al. Development of hydrogen rotary engine vehicle[C]//16th World Hydrogen Energy Conference. Lyon: Sevanova, 2006: 13-17.
|
[18] |
SALANKI P A, WALLACE J S. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications[C]//SAE Technical Paper. Detroit: SAE International, 1996: 960232.
|
[19] |
CHEN W, PAN J, LIU Y, et al. Numerical investigation of direct injection stratified charge combustion in a naturalgas-diesel rotary engine[J]. Applied Energy, 2019, 233: 453-467.
|
[20] |
FAN B, PAN J, YANG W, et al. Effects of hydrogen blending mode on combustion process of a rotary engine fueled with natural gas/hydrogen blends[J]. International Journal of Hydrogen Energy, 2016, 41(6): 4039-4053. doi: 10.1016/j.ijhydene.2016.01.006
|
[21] |
JI C, SU T, WANG S, et al. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions[J]. Energy Conversion and Management, 2016, 121: 272-280. doi: 10.1016/j.enconman.2016.05.040
|
[22] |
YANG J, JI C, WANG S, et al. Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment[J]. Applied Energy, 2018, 224: 34-41. doi: 10.1016/j.apenergy.2018.04.092
|
[23] |
HOMAN H, REYNOLDS R, DE BOER P, et al. Hydrogen-fueled diesel engine without timed ignition[J]. International Journal of Hydrogen Energy, 1979, 4(4): 315-325. doi: 10.1016/0360-3199(79)90006-5
|
[24] |
CHINTALA V, SUBRAMANIAN K. A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode[J]. Renewable Sustainable Energy Reviews, 2017, 70: 472-491. doi: 10.1016/j.rser.2016.11.247
|
[25] |
VARDE K, FRAME G. Hydrogen aspiration in a direct injection type diesel engine-its effects on smoke and other engine performance parameters[J]. International Journal of Hydrogen Energy, 1983, 8(7): 549-555. doi: 10.1016/0360-3199(83)90007-1
|
[26] |
LILIK G K, ZHANG H, HERREROS J M, et al. Hydrogen assisted diesel combustion[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4382-4398. doi: 10.1016/j.ijhydene.2010.01.105
|
[27] |
LIU S, LI H, LIEW C, et al. An experimental investigation of NO2 emission characteristics of a heavy-duty H2-diesel dual fuel engine[J]. International Journal of Hydrogen Energy, 2011, 36(18): 12015-12024. doi: 10.1016/j.ijhydene.2011.06.058
|
[28] |
KÖSE H, CINIVIZ M. An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen[J]. Fuel Processing Technology, 2013, 114: 26-34. doi: 10.1016/j.fuproc.2013.03.023
|
[29] |
DE MORAIS A M, JUSTINO M A M, VALENTE O S, et al. Hydrogen impacts on performance and CO2 emissions from a diesel power generator[J]. International Journal of Hydrogen Energy, 2013, 38(16): 6857-6864. doi: 10.1016/j.ijhydene.2013.03.119
|
[30] |
LIEW C, LI H, LIU S, et al. Exhaust emissions of a H2-enriched heavy-duty diesel engine equipped with cooled EGR and variable geometry turbocharger[J]. Fuel, 2012, 91(1): 155-163. doi: 10.1016/j.fuel.2011.08.002
|
[31] |
GUO H, HOSSEINI V, NEILL W S, et al. An experimental study on the effect of hydrogen enrichment on diesel fueled HCCI combustion[J]. International Journal of Hydrogen Energy, 2011, 36(21): 13820-13830. doi: 10.1016/j.ijhydene.2011.07.143
|
[32] |
PARK H, KIM J, BAE C. Effects of hydrogen ratio and egr on combustion and emissions in a hydrogen/diesel dual-fuel PCCI engine[C]//SAE Technical Paper. Detroit: SAE International, 2015: 2015-01-1815.
|
[33] |
GURNEY G, PORTER D H, BRACK G W, et al. The life and times of sir goldsworthy gurney: gentleman scientist andinventor, 1793-1875[M]. Bethlehem: Lehigh University Press, 1998.
|
[34] |
KOCH E. Ammonia-a fuel for motor buses[J]. J Inst Pet, 1945, 31: 213. https://publications.lib.chalmers.se/records/fulltext/207145/207145.pdf
|
[35] |
CORNELIUS W, HUELLMANTEL L W, MITCHELL H R. Ammonia as an engine fuel[J]. SAE Transactions, 1966, 74(1): 300-326. https://www.sae.org/publications/technical-papers/content/650052/
|
[36] |
STARKMAN E S, JAMES G, NEWHALL H. Ammonia as a diesel engine fuel: theory and application[J]. SAE Transactions, 1968, 76(4): 3193-3212. https://www.sae.org/publications/technical-papers/content/670946/
|
[37] |
PEARSALL T J, GARABEDIAN C G. Combustion of anhydrous ammonia in diesel engines[J]. SAE Transactions, 1968, 76(4): 3213-3221. https://www.sae.org/publications/technical-papers/content/670947/
|
[38] |
GRAY JR J T, DIMITROFF E, MECKEL N T, et al. Ammonia fuel-engine compatibility and combustion[J]. SAE Transactions, 1967, 75(1): 785-807. https://www.jstor.org/stable/44563675
|
[39] |
REITER A J, KONG S C. Demonstration of compression-ignition engine combustion using ammonia inreducing greenhouse gas emissions[J]. Energy & Fuels, 2008, 22(5): 2963-2971. https://www.researchgate.net/publication/231273519_Demonstration_of_Compression-Ignition_Engine_Combustion_Using_Ammonia_in_Reducing_Greenhouse_Gas_Emissions
|
[40] |
NIKI Y, YOO D H, HIRATA K, et al. Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine[C]//Internal Combustion Engine Division Fall Technical Conference. Greenville: American Society of Mechanical Engineers, 2016: V001T03A004.
|
[41] |
LEE D, SONG H H. Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics[J]. Journal of Mechanical Science Technology, 2018, 32(4): 1905-1925. doi: 10.1007/s12206-018-0347-x
|
[42] |
VELTMAN M, KONG S C. Developing fuel injection strategies for using ammonia in direct injection diesel engines[C/OL]//2010 Annual NH3 Fuel Conference. [2021-10-01]. https://nh3fuelassociation.org/wp-content/uploads/2012/05/veltman_kong.pdf.
|
[43] |
MØRCH C S, BJERRE A, GØTTRUP M P, et al. Ammonia/hydrogen mixtures in an SI-engine: Engineperformance and analysis of a proposed fuel system[J]. Fuel, 2011, 90(2): 854-864. doi: 10.1016/j.fuel.2010.09.042
|
[44] |
WESTLYE F R, IVARSSON A, SCHRAMM J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine[J]. Fuel, 2013, 111: 239-247. doi: 10.1016/j.fuel.2013.03.055
|
[45] |
EZZAT M, DINCER I. Development and assessment of a new hybrid vehicle with ammonia and hydrogen[J]. Applied Energy, 2018, 219: 226-239. doi: 10.1016/j.apenergy.2018.03.012
|
[46] |
FRIGO S, GENTILI R, DOVERI N. Ammonia plus hydrogen as fuel in a SI engine: experimental results[C]//SAE Technical Paper. Detroit: SAE International, 2012: 2012-32-0019.
|
[47] |
KOIKE M, SUZUOKI T. In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32271-32279. doi: 10.1016/j.ijhydene.2019.10.105
|
[48] |
LHUILLIER C, BREQUIGNY P, CONTINO F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions[J]. Fuel, 2020, 269: 117448. doi: 10.1016/j.fuel.2020.117448
|
[49] |
JI C, XIN G, WANG S, et al. Effect of ammonia addition on combustion and emissions performance of a hydrogen engine at part load and stoichiometric conditions[J]. International Journal of Hydrogen Energy, 2021, 46(80): 40143-40153. doi: 10.1016/j.ijhydene.2021.09.208
|
[50] |
LANDÄLV I. Methanol as a renewable fuel-a knowledge synthesis[R/OL]. [2021-10-01]. https://platformduurzamebiobrandstoffen.nl/wp-content/uploads/2017/09/2017_F3_Methanol-as-a-renewable-fuel.pdf.
|
[51] |
LI C, NEGNEVITSKY M, WANG X. Review of methanol vehicle policies in China: current status and future implications[J]. Energy Procedia, 2019, 160: 324-331. doi: 10.1016/j.egypro.2019.02.164
|
[52] |
VERHELST S, TURNER J W G, SILEGHEM L, et al. Methanol as a fuel for internal combustion engines[J]. Progress in Energy and Combustion Science, 2019, 70: 43-88. doi: 10.1016/j.pecs.2018.10.001
|
[53] |
GARDINER M. Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs[R]. Washington: DOE of USA, 2009: 9013.
|
[54] |
BRUSSTAR M, STUHLDREHER M, SWAIN D, et al. High efficiency and low emissions from a port-injected engine with neat alcohol fuels[J]. SAE Transactions, 2002, 111(4): 1445-1451.
|
[55] |
NAKATA K, UTSUMI S, OTA A, et al. The effect of ethanol fuel on a spark ignition engine[C]//SAE Technical Paper. Detroit: SAE International, 2006: 2006-01-3380.
|
[56] |
VANCOILLIE J, DEMUYNCK J, SILEGHEM L, et al. The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines[J]. Applied Energy, 2013, 102: 140-149. doi: 10.1016/j.apenergy.2012.05.065
|
[57] |
SILEGHEM L, HUYLEBROECK T, VAN DEN BULCKE A, et al. Performance and emissions of a SI engine using methanol-water blends[C]//SAE Technical Paper. Detroi: SAE International, 2013: 2013-01-1319.
|
[58] |
XIE F X, LI X P, WANG X C, et al. Research on using EGR and ignition timing to control load of a spark-ignition engine fueled with methanol[J]. Applied Thermal Engineering, 2013, 50(1): 1084-1091. doi: 10.1016/j.applthermaleng.2012.08.003
|
[59] |
GONG C, HUANG K, CHEN Y, et al. Cycle-by-cycle combustion variation in a DISI engine fueled with methanol[J]. Fuel, 2011, 90(8): 2817-2819. doi: 10.1016/j.fuel.2011.04.010
|
[60] |
彭乐高, 宫长明, 宫宝利, 等. 富氧下甲醇发动机冷起动燃烧及非法规排放[J]. 内燃机学报, 2017, 35(5): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201705006.htm
PENG L G, GONG C M, GONG B L, et al. Combustion and unregulated emissions in a methanol engine during cold start under oxygen-enriched condition[J]. Transactions of CSICE, 2017, 35(5): 423-428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201705006.htm
|
[61] |
GONG C M, HUANG K, JIA J L, et al. Regulated emissions from a direct-injection spark-ignition methanol engine[J]. Energy, 2011, 36(5): 3379-3387. doi: 10.1016/j.energy.2011.03.035
|
[62] |
LI J, GONG C M, SU Y, et al. Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol[J]. Fuel, 2010, 89(12): 3919-3925. doi: 10.1016/j.fuel.2010.06.038
|
[63] |
ZHEN X, WANG Y, XU S, et al. Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation[J]. Energy, 2013, 50: 150-159. doi: 10.1016/j.energy.2012.09.062
|
[64] |
ZHEN X, WANG Y, ZHU Y. Study of knock in a high compression ratio SI methanol engine using LES with detailed chemical kinetics[J]. Energy Conversion and Management, 2013, 75: 523-531. doi: 10.1016/j.enconman.2013.07.001
|
[65] |
冯是全, 胡以怀, 金浩. 甲醇柴油双燃料发动机的燃烧特性分析[J]. 环境工程, 2016, 34(增刊1): 593-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2016S1144.htm
FENG S Q, HU Y H, JIN H. Analysis of combustion characteristics of methanoland diesel dual fuel engine[J]. Environmental Engineering, 2016, 34(Suppl 1): 593-596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2016S1144.htm
|
[66] |
房晟, 周德峰, 王斌. 不同海拔下甲醇-柴油双燃料发动机的燃烧循环波动研究[J]. 车用发动机, 2021(4): 22-28. doi: 10.3969/j.issn.1001-2222.2021.04.004
FANG S, ZHOU D F, WANG B. Cyclic variation of dual fuel engine fueled with diesel and methanol at different altitudes[J]. Vehicle Engine, 2021(4): 22-28. (in Chinese) doi: 10.3969/j.issn.1001-2222.2021.04.004
|
[67] |
YAO C, CHEUNG C S, CHENG C, et al. Effect of diesel/methanol compound combustion on diesel engine combustion and emissions[J]. Energy Conversion and Management, 2008, 49(6): 1696-1704. doi: 10.1016/j.enconman.2007.11.007
|
[68] |
WEI L, YAO C, WANG Q, et al. Combustion and emission characteristics of a turbocharged diesel engine using high premixed ratio of methanol and diesel fuel[J]. Fuel, 2015, 140: 156-163. doi: 10.1016/j.fuel.2014.09.070
|
[69] |
CHEUNG C S, ZHANG Z H, CHAN T L, et al. Investigation on the effect of port-injected methanol on the performance and emissions of a diesel engine at different engine speeds[J]. Energy & Fuels, 2009, 23(11): 5684-5694. doi: 10.1021/ef9005516
|
[70] |
JI C, ZHANG B, WANG S. Enhancing the performance of a spark-ignition methanol engine with hydrogen addition[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7490-7498. doi: 10.1016/j.ijhydene.2013.04.001
|
[71] |
YUEN P, VILLAIRE W, BECKETT J. Automotive materials engineering challenges and solutions for the use of ethanol and methanol blended fuels[C]//SAE Technical Paper. Detroit: SAE International, 2010: 2010-01-0729.
|
[72] |
MARRIOTT C D, WILES M A, GWIDT J M, et al. Development of a naturally aspirated spark ignition direct-injection flex-fuel engine[J]. SAE International Journal of Engines, 2009, 1(1): 267-295. https://www.sae.org/publications/technical-papers/content/2008-01-0319/
|
[73] |
COLPIN C, LEONE T, LHUILLERY M, et al. Key parameters for startability improvement applied to ethanol engines[J]. SAE International Journal of Fuels, 2009, 2(1): 180-188. https://www.jstor.org/stable/pdf/26273378.pdf
|
[74] |
CELIK M B. Experimental determination of suitable ethanol-gasoline blend rate at high compression ratio for gasoline engine[J]. Applied Thermal Engineering, 2008, 28(5/6): 396-404.
|
[75] |
PARK C, CHOI Y, KIM C, et al. Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas[J]. Fuel, 2010, 89(8): 2118-2125. doi: 10.1016/j.fuel.2010.03.018
|
[76] |
OZSEZEN A N, CANAKCI M. Performance and combustion characteristics of alcohol-gasoline blends at wide-open throttle[J]. Energy, 2011, 36(5): 2747-2752. doi: 10.1016/j.energy.2011.02.014
|
[77] |
TURNER D, XU H, CRACKNELL R F, et al. Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine[J]. Fuel, 2011, 90(5): 1999-2006. doi: 10.1016/j.fuel.2010.12.025
|
[78] |
SCHIFTER I, DIAZ L, RODRIGUEZ R, et al. Combustion and emissions behavior for ethanol-gasoline blends in a single cylinder engine[J]. Fuel, 2011, 90(12): 3586-3592. doi: 10.1016/j.fuel.2011.01.034
|
[79] |
VENUGOPAL T, SHARMA A, SATAPATHY S, et al. Experimental study of hydrous ethanol gasoline blend (E10) in a four stroke port fuel-injected spark ignition engine[J]. International Journal of Energy Research, 2013, 37(6): 638-644. doi: 10.1002/er.1957
|
[80] |
YOON S H, LEE C S. Effect of undiluted bioethanol on combustion and emissions reduction in a SI engine at various charge air conditions[J]. Fuel, 2012, 97: 887-890. doi: 10.1016/j.fuel.2012.02.001
|
[81] |
MUNSIN R, LAOONUAL Y, JUGJAI S, et al. An experimental study on performance and emissions of a small SI engine generator set fuelled by hydrous ethanol with high water contents up to 40%[J]. Fuel, 2013, 106: 586-592. doi: 10.1016/j.fuel.2012.12.079
|
[82] |
JIA L W, SHEN M Q, WANG J, et al. Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine[J]. Journal of Hazardous Materials, 2005, 123(1/2/3): 29-34. https://www.ncbi.nlm.nih.gov/pubmed/15923082
|
[83] |
PANG X, MU Y, YUAN J, et al. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines[J]. Atmospheric Environment, 2008, 42(6): 1349-1358. doi: 10.1016/j.atmosenv.2007.10.075
|
[84] |
YAO Y C, TSAI J H, WANG I T. Emissions of gaseous pollutant from motorcycle powered by ethanol-gasoline blend[J]. Applied Energy, 2013, 102: 93-100. doi: 10.1016/j.apenergy.2012.07.041
|
[85] |
DE MELO T C C, MACHADO G B, BELCHIOR C R, et al. Hydrous ethanol-gasoline blends-combustion and emission investigations on a Flex-Fuel engine[J]. Fuel, 2012, 97: 796-804. doi: 10.1016/j.fuel.2012.03.018
|
[86] |
PARTHASARATHI R, GOWRI S, SARAVANAN C G. Experimental investigation of performance, emission and combustion characteristics of kirloskar TV-I DI diesel engine using diesel-ethanol-surfactant as fuel[J]. ARPN Journal of Engineering and Applied Sciences, 2012, 7(11): 1468-1472. https://www.researchgate.net/publication/287471003_Experimental_investigation_of_performance_emission_and_combustion_characteristics_of_kirloskar_tvi_di_diesel_engine_using_diesel-ethanol-surfactant_as_fuel
|
[87] |
SAYIN C. Engine performance and exhaust gas emissions of methanol and ethanol-diesel blends[J]. Fuel, 2010, 89(11): 3410-3415. doi: 10.1016/j.fuel.2010.02.017
|
[88] |
RAKOPOULOS D C, RAKOPOULOS C D, GIAKOUMIS E G, et al. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine[J]. Energy Conversion and Management, 2010, 51(10): 1989-1997. doi: 10.1016/j.enconman.2010.02.032
|
[89] |
TAGHIZADEH-ALISARAEI A, REZAEI-ASL A. The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine[J]. Fuel, 2016, 185: 718-733. doi: 10.1016/j.fuel.2016.08.041
|
[90] |
HE B Q, SHUAI S J, WANG J X, et al. The effect of ethanol blended diesel fuels on emissions from a diesel engine[J]. Atmospheric Environment, 2003, 37(35): 4965-4971. doi: 10.1016/j.atmosenv.2003.08.029
|
[91] |
TUTAK W, JAMROZIK A, PYRC M, et al. A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine[J]. Applied Thermal Engineering, 2017, 117: 155-163. doi: 10.1016/j.applthermaleng.2017.02.029
|
[92] |
BANUGOPAN V N, PRABHAKAR S, ANNAMALAI K, et al. Experimental investigation on DI diesel engine fuelled by ethanol diesel blend with varying inlet air temperature[C]//Frontiers in Automobile and Mechanical Engineering-2010. Piscataway: IEEE, 2010: 128-134.
|
[93] |
ELFASAKHANY A. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends[J]. Energy Conversion and Management, 2014, 88: 277-283. doi: 10.1016/j.enconman.2014.08.031
|
[94] |
SINGH S B, DHAR A, AGARWAL A K. Technical feasibility study of butanol-gasoline blends for powering medium-duty transportation spark ignition engine[J]. Renewable Energy, 2015, 76: 706-716. doi: 10.1016/j.renene.2014.11.095
|
[95] |
SAYIN C, BALKI M K. Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends[J]. Energy, 2015, 82: 550-555. doi: 10.1016/j.energy.2015.01.064
|
[96] |
HE B Q, CHEN X, LIN C L, et al. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline[J]. Energy Conversion and Management, 2016, 124: 556-565. doi: 10.1016/j.enconman.2016.07.053
|
[97] |
陈征, 杨峰, 薛硕, 等. 直喷汽油机燃用高比例正丁醇-汽油混合燃料的燃烧特性[J]. 燃烧科学与技术, 2015, 21(5): 403-407. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201505004.htm
CHEN Z, YANG F, XUE S, et al. Combustion characteristics of gasoline direct injection engine fuelled with gasoline blend fuel of high n-butanol ratio[J]. Journal of Combustion Science and Technology, 2015, 21(5): 403-407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201505004.htm
|
[98] |
WEI H, FENG D, PAN J, et al. Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate[J]. Energy, 2017, 118: 190-196. doi: 10.1016/j.energy.2016.11.134
|
[99] |
ZHANG Z, WANG T, JIA M, et al. Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation[J]. Fuel, 2014, 130: 177-188. doi: 10.1016/j.fuel.2014.04.052
|
[100] |
GRAVALOS I, MOSHOU D, GIALAMAS T, et al. Emissions characteristics of spark ignition engine operating on lower-higher molecular mass alcohol blended gasoline fuels[J]. Renewable Energy, 2013, 50: 27-32. doi: 10.1016/j.renene.2012.06.033
|
[101] |
FENG R, YANG J, ZHANG D, et al. Experimental study on SI engine fuelled with butanol-gasoline blend and H2O addition[J]. Energy Conversion and Management, 2013, 74: 192-200. doi: 10.1016/j.enconman.2013.05.021
|
[102] |
FENG R, FU J, YANG J, et al. Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend[J]. Renewable Energy, 2015, 81: 113-122. doi: 10.1016/j.renene.2015.03.025
|
[103] |
CAIRNS A, ZHAO H, TODD A, et al. A study of mechanical variable valve operation with gasoline-alcohol fuels in a spark ignition engine[J]. Fuel, 2013, 106: 802-813. doi: 10.1016/j.fuel.2012.10.041
|
[104] |
CHEN Z, LIU J, WU Z, et al. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine[J]. Energy Conversion and Management, 2013, 76: 725-731. doi: 10.1016/j.enconman.2013.08.030
|
[105] |
MICHIKAWAUCHI R, TANNO S, ITO Y, et al. Combustion improvement of diesel engine by alcohol addition-investigation of port injection method and blended fuel method[J]. SAE International Journal of Fuels and Lubricants, 2011, 4(1): 48-57. doi: 10.4271/2011-01-0336
|
[106] |
李临蓬, 毛斌, 郑尊清, 等. 汽油、正丁醇掺混柴油对部分预混压燃的燃烧和排放影响[J]. 内燃机学报, 2020, 38(4): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202004001.htm
LI L P, MAO B, ZHENG Z Q, et al. Effect of gasoline/diesel and n-butanol/diesel blends on combustion and emissions of PPCI[J]. Transactions of CSICE, 2020, 38(4): 289-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202004001.htm
|
[107] |
CHEN Z, WU Z, LIU J, et al. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact[J]. Energy Conversion and Management, 2014, 78: 787-795. doi: 10.1016/j.enconman.2013.11.037
|
[108] |
ZHANG Q, YAO M, ZHENG Z, et al. Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion[J]. Energy, 2012, 47(1): 515-521. doi: 10.1016/j.energy.2012.09.020
|
[109] |
RAKOPOULOS D C, RAKOPOULOS C D, GIAKOUMIS E G, et al. Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether[J]. Energy, 2014, 73: 354-366. doi: 10.1016/j.energy.2014.06.032
|
[110] |
RAJESH KUMAR B, SARAVANAN S. Effect of iso-butanol addition to diesel fuel on performance and emissions of a DI diesel engine with exhaust gas recirculation[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(1): 112-125. doi: 10.1177/0957650915617107
|
[111] |
柳茂斌, 何邦全, 赵华. 正丁醇/乙醇-汽油HCCI发动机的低温燃烧与排放特性[J]. 燃烧科学与技术, 2018, 24(5): 424-432. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201805007.htm
LIU M B, HE B Q, ZHAO H. Combustion and emission characteristics of a HCCI engine fuelled with n-butanol/ethanol-gasoline blend[J]. Journal of Combustion Science and Technology, 2018, 24(5): 424-432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX201805007.htm
|
[112] |
ZHENG M, HAN X, ASAD U, et al. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine[J]. Energy Conversion and Management, 2015, 98: 215-224. doi: 10.1016/j.enconman.2015.03.098
|
[113] |
LIANG C, JI C, LIU X. Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition[J]. Applied Energy, 2011, 88(11): 3704-3711. doi: 10.1016/j.apenergy.2011.04.056
|
[114] |
何邦全, 赵国兴, 李晓, 等. 直喷二甲醚在汽油机中压缩自燃特性的试验研究[J]. 内燃机工程, 2019, 40(4): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201904013.htm
HE B Q, ZHAO G X, LI X, et al. Experimental study on auto-ignition characteristics of direct-injected dimethyl etherin a gasoline engine[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(4): 85-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201904013.htm
|
[115] |
SHI L, JI C, WANG S, et al. Impacts of dimethyl ether enrichment and various injection strategies on combustion and emissions of direct injection gasoline engines in the lean-burn condition[J]. Fuel, 2019, 254: 115636. doi: 10.1016/j.fuel.2019.115636
|
[116] |
纪常伟, 石磊, 张擘, 等. 二甲醚对乙醇内燃机性能的影响[J]. 北京工业大学学报, 2015, 41(5): 763-768. doi: 10.11936/bjutxb2014090016
JI C W, SHI L, ZHANG B, et al. Effect of dimethyl ether addition on the performance of spark-ignition ethanol engine[J]. Journal of Beijing University of Technology, 2015, 41(5): 763-768. (in Chinese) doi: 10.11936/bjutxb2014090016
|
[117] |
CHAPMAN E M, BOEHMAN A L. Pilot ignited premixed combustion of dimethyl ether in a turbodiesel engine[J]. Fuel Processing Technology, 2008, 89(12): 1262-1271. doi: 10.1016/j.fuproc.2008.08.010
|
[118] |
李东昌, 汪映, 赵玉伟, 等. DME预混比和柴油供油提前角对PCCI发动机性能影响[J]. 内燃机工程, 2014, 35(4): 40-44, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201404008.htm
LI D C, WANG Y, ZHAO Y W, et al. Effect of DME premixed ratio and diesel injection advanced angle on PCCI engine performance[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 40-44, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201404008.htm
|
[119] |
WANG Y, XIAO F, ZHAO Y, et al. Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel[J]. Applied Energy, 2015, 143: 58-70. doi: 10.1016/j.apenergy.2014.12.079
|
[120] |
WANG Y, LI G B, ZHAO Y W, et al. Study on the application of DME/diesel blends in a diesel engine[J]. Fuel Processing Technology, 2008, 89(12): 1272-1280. doi: 10.1016/j.fuproc.2008.05.023
|
[121] |
宋清双, 李跟宝, 周龙保, 等. 柴油机燃用二甲醚/柴油混合燃料时的性能与排放研究[J]. 西安交通大学学报, 2006, 40(3): 294-297. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200603010.htm
SONG Q S, LI G B, ZHOU L B, et al. Study on performance and emission characteristics of direct injection diesel engine fueled with blend of dimethyl ether/diesel fuel mixture[J]. Journal of Xi'an Jiaotong University, 2006, 40(3): 294-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200603010.htm
|
[122] |
李跟宝, 周龙保. 柴油机燃用二甲醚/柴油混合燃料时的特性研究[J]. 内燃机工程, 2010, 31(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201001004.htm
LI G B, ZHOU L B. Research on characteristics of compression ignition engine fueled with dimethyl ether/dieselblend[J]. Chinese Internal Combustion Engine Engineering. 2010, 31(1): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201001004.htm
|
[123] |
HOU J, WEN Z, JIANG Z, et al. Study on combustion and emissions of a turbocharged compression ignition engine fueled with dimethyl ether and biodiesel blends[J]. Journal of the Energy Institute, 2014, 87(2): 102-113. doi: 10.1016/j.joei.2014.03.021
|
[124] |
SUN C, LIU Y, QIAO X, et al. Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine[J]. Energy, 2020, 197: 117233. doi: 10.1016/j.energy.2020.117233
|
[125] |
YAO M, CHEN Z, ZHENG Z, et al. Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol[J]. Fuel, 2006, 85(14/15): 2046-2056. https://www.sciencedirect.com/science/article/pii/S0016236106000986
|
[126] |
陈征, 尧命发, 郑尊清, 等. 甲醇/二甲醚双燃料发动机全负荷范围优化策略的研究[J]. 内燃机学报, 2008, 26(6): 493-498. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200806002.htm
CHEN Z, YAO M F, ZHENG Z Q, et al. Optimal strategy for methanol/DME dual-fuel engine over whole load ranges[J]. Transactions of CSICE, 2008, 26(6): 493-498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX200806002.htm
|
[127] |
YAO M, ZHENG Z, CHEN Z, et al. Experimental study on homogeneous charge compression ignition operation by burning dimethyl ether and methanol[J]. International Journal of Green Energy, 2007, 4(3): 283-300. doi: 10.1080/15435070701193134
|
[128] |
李德钢, 黄震, 乔信起, 等. 压缩比和CO2对二甲醚燃料均质压燃燃烧的影响[J]. 上海交通大学学报, 2005, 39(2): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200502001.htm
LI D G, HUANG Z, QIAO X Q, et al. Effects of compression ratio and CO2 on the process HCCI combustion fueled with DME[J]. Journal of Shanghai Jiaotong University, 2005, 39(2): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200502001.htm
|
[129] |
ZHANG J, QIAO X, WANG Z, et al. Experimental investigation of low-temperature combustion (LTC) in an engine fueled with dimethyl ether (DME)[J]. Energy & Fuels, 2009, 23(1): 170-174. https://www.researchgate.net/publication/231273788_Experimental_Investigation_of_Low-Temperature_Combustion_LTC_in_an_Engine_Fueled_with_Dimethyl_Ether_DME
|
[130] |
OLIVEIRA J F G, LUCENA I L, SABOYA R M A, et al. Biodiesel production from waste coconut oil by esterification with ethanol: the effect of water removal by adsorption[J]. Renewable Energy, 2010, 35(11): 2581-2584. doi: 10.1016/j.renene.2010.03.035
|
[131] |
高东志, 秦建芸, 许丹丹, 等. 生物柴油和柴油直喷喷雾特性试验研究[J]. 车用发动机, 2021(4): 36-41. doi: 10.3969/j.issn.1001-2222.2021.04.006
GAO D Z, QIN J Y, XU D D, et al. Spray characteristic of direct injection for biodiesel and diesel[J]. Vehicle Engine, 2021(4): 36-41. (in Chinese) doi: 10.3969/j.issn.1001-2222.2021.04.006
|
[132] |
米永刚, 玄铁民, 何志霞, 等. 加氢催化生物柴油-柴油的喷雾燃烧特性[J]. 内燃机学报, 2021, 39(4): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202104004.htm
MI Y G, XUAN T M, HE Z X, et al. Study on reacting spray characteristics of a blend fuel with hydrogenation catalytic biodiesel and diesel[J]. Transactions of CSICE, 2021, 39(4): 314-319. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202104004.htm
|
[133] |
ONG H C, MASJUKI H H, MAHLIA T M I, et al. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine[J]. Energy, 2014, 69: 427-445. doi: 10.1016/j.energy.2014.03.035
|
[134] |
RAMADHAS A S, MURALEEDHARAN C, JAYARAJ S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil[J]. Renewable Energy, 2005, 30(12): 1789-1800. doi: 10.1016/j.renene.2005.01.009
|
[135] |
AN H, YANG W M, CHOU S K, et al. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions[J]. Applied Energy, 2012, 99: 363-371. doi: 10.1016/j.apenergy.2012.05.049
|
[136] |
AYDIN H, BAYINDIR H. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine[J]. Renewable Energy, 2010, 35(3): 588-592. doi: 10.1016/j.renene.2009.08.009
|
[137] |
BUYUKKAYA E. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics[J]. Fuel, 2010, 89(10): 3099-3105. doi: 10.1016/j.fuel.2010.05.034
|
[138] |
QI D H, GENG L M, CHEN H, et al. Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil[J]. Renewable Energy, 2009, 34(12): 2706-2713. doi: 10.1016/j.renene.2009.05.004
|