• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
ZHAO Baihang, FAN Sa, BIAN Wei, JIANG Binbin, SU Chen, LI Jun, ZHU Yihao, LI Yuqi. Dissolved Organic Matter Adsorption Removal by Coal Gangue in High Salinity Mine Water[J]. Journal of Beijing University of Technology, 2022, 48(9): 989-997. DOI: 10.11936/bjutxb2021040003
Citation: ZHAO Baihang, FAN Sa, BIAN Wei, JIANG Binbin, SU Chen, LI Jun, ZHU Yihao, LI Yuqi. Dissolved Organic Matter Adsorption Removal by Coal Gangue in High Salinity Mine Water[J]. Journal of Beijing University of Technology, 2022, 48(9): 989-997. DOI: 10.11936/bjutxb2021040003

Dissolved Organic Matter Adsorption Removal by Coal Gangue in High Salinity Mine Water

More Information
  • Received Date: March 31, 2021
  • Revised Date: June 17, 2021
  • Available Online: September 13, 2022
  • Research of dissolved organic matter (DOM) adsorption by coal gangue was carried out. Coal gangue was from coal mine underground reservoir and was characterized by SEM, BET, BJH, and XRF. The effects of the coal gangue dosage, temperature, and initial DOM concentration on DOM removal by coal gangue were investigated. Results show that the coal gangue has a lamellar structure with well-developed inter-particle pores. The BET specific surface area of the coal gangue was 5.697 m2/g. A 0.748 mg/g equilibrium adsorption capacity and 74.78% DOM removal efficiency were gotten under the conditions of 20 mg/L DOM concentration, 20 g/L coal gangue, 25 ℃, and 12 hours adsorption time. The DOM adsorption by coal gangue can be well described by Langmuir isotherm and quasi-second-order kinetic model. The adsorption process was monolayer adsorption and was mainly chemical adsorption. The thermodynamic analysis shows that the adsorption process is a spontaneous endothermic reaction. DOM removal performance and mechanism by coal gangue in high-salinity mine water system were deeply explored. The research results may provide a theoretical support and technical guidance for safe storage of water in underground reservoir with high-salinity mines (represented by the Ningdong mining area), and give an insight for solving the problem of water shortage in the western coal mining areas.

  • [1]
    "能源领域咨询研究"综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学, 2015, 17(9): 1-5. doi: 10.3969/j.issn.1009-1742.2015.09.002

    The Comprehensive Research Group for Energy Consulting and Research. Strategic research on clean, efficient, sustainable exploitation and utilization of coal in China[J]. Chinese Engineering Science, 2015, 17(9): 1-5. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.09.002
    [2]
    顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU D Z, ZHANG Y, CAO Z G. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm
    [3]
    顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU D Z. Theory framework and technological system of coal mine underground reservoir[J]. Journal of Coal, 2015, 40(2): 239-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [4]
    陈苏社, 黄庆享, 薛刚, 等. 大柳塔煤矿地下水库建设与水资源利用技术[J]. 煤炭科学技术, 2016, 44(8): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608004.htm

    CHEN S S, HUANG Q X, XUE G, et al. Technology of underground reservoir construction and water resource utilization in Daliuta Coal Mine[J]. Coal Science and Technology, 2016, 44(8): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608004.htm
    [5]
    杨建. 井上下联合处理矿井水中污染物效果研究[J]. 煤田地质与勘探, 2016, 44(2): 55-58. doi: 10.3969/j.issn.1001-1986.2016.02.011

    YANG J. Effect of pollutant treatment of mine water in mine and on the surface[J]. Coalfield Geology and Exploration, 2016, 44(2): 55-58. (in Chinese) doi: 10.3969/j.issn.1001-1986.2016.02.011
    [6]
    ZHUANG W E, CHEN W, CHENG Q, et al. Assessing the priming effect of dissolved organic matter from typical sources using fluorescence EEMs-PARAFAC[J]. Chemosphere, 2021, 264(Pt 2): 128600.
    [7]
    LIU S, ZHAO T, ZHU Y, et al. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes[J]. Science of the Total Environment, 2018, 616/617/618: 602-613.
    [8]
    冯启言, 张彦, 孟庆俊. 煤矿区废水中溶解性有机质与铜的结合特性[J]. 中国环境科学, 2013, 33(8): 1433-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201308020.htm

    FENG Q Y, ZHANG Y, MENG Q J. Quantitative characterization of Cu binding potential of dissolved organic matter in wastewater of mining area[J]. Environmental Science, 2013, 33(8): 1433-1441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201308020.htm
    [9]
    杨建. 桌子山矿区地下水中溶解性有机质荧光特征分析[J]. 煤矿安全, 2014, 45(2): 131-134, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201402041.htm

    YANG J. The fluorescence properties of dissolved organic matter in Zhuozishan mine groundwater[J]. Coal Mine Safety, 2014, 45(2): 131-134, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201402041.htm
    [10]
    杨建, 王强民, 刘基, 等. 煤矿井下不同区域矿井水中有机污染特征[J]. 煤炭学报, 2018, 43(增刊2): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2024.htm

    YANG J, WANG Q M, LIU J, et al. Fluorescence characteristics of dissolved organic matter in underground different position of coal mine[J]. Journal of Coal, 2018, 43(Suppl 2): 546-552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2024.htm
    [11]
    于妍, 陈薇, 曹志国, 等. 煤矿地下水库矿井水中溶解性有机质变化特征的研究[J]. 中国煤炭, 2018, 44(10): 168-173. doi: 10.3969/j.issn.1006-530X.2018.10.031

    YU Y, CHEN W, CAO Z G, et al. Research on change features on dissolved organic matter of mine water in coal mine's underground reservoir[J]. Chinese Coal, 2018, 44(10): 168-173. (in Chinese) doi: 10.3969/j.issn.1006-530X.2018.10.031
    [12]
    韩佳明, 于妍, 郑然峰, 等. 煤矿地下水库DOM来源解析[J]. 矿业科学学报, 2020, 5(5): 575-583. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202005012.htm

    HAN J M, YU Y, ZHENG R F, et al. Analysis of the source of DOM in underground reservoir of coal mine[J]. Journal of Mining Science, 2020, 5(5): 575-583. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202005012.htm
    [13]
    赵丽, 孙艳芳, 杨志斌, 等. 煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J]. 煤炭学报, 2018, 43(1): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801029.htm

    ZHAO L, SUN Y F, YANG Z B, et al. Removal efficiencies of dissolved organic matter and ammonium in coal mine water by coal gangue through column experiments[J]. Journal of Coal, 2018, 43(1): 236-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801029.htm
    [14]
    张给禄, 张梦瑶, 刘义青, 等. 锌改性煤矸石的制备及其对废水中磷酸盐的吸附去除[J]. 土木与环境工程学报(中英文), 2022, 44(3): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202203016.htm

    ZHANG G L, ZHANG M Y, LIU Y Q, et al. Preparation of zinc-modified coal gangue and its adsorption on phosphate from wastewater[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 141-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202203016.htm
    [15]
    GUAYA D, VALDERRAMA C, FARRAN A, et al. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite[J]. Chemical Engineering Journal, 2015, 271: 204-213. doi: 10.1016/j.cej.2015.03.003
    [16]
    MALIMA N M, OWONUBI S J, LUGWISHA E H, et al. Thermodynamic, isothermal and kinetic studies of heavy metals adsorption by chemically modified Tanzanian Malangali kaolin clay[J]. International Journal of Environmental Science and Technology (Tehran), 2021, 18(10): 3153-3168. doi: 10.1007/s13762-020-03078-0
    [17]
    丁伟, 巴图其木格, 张玲玲, 等. 自燃煤矸石吸附磷的动力学和热力学[J]. 环境工程学报, 2017, 11(7): 4059-4066. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201707020.htm

    DING W, BATCHIMEG, ZHANG L L, et al. Kinetic and thermodynamic study of phosphate adsorption by spontaneous combustion coal gangue[J]. Environmental Engineering, 2017, 11(7): 4059-4066. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201707020.htm
    [18]
    DIM P E, MUSTAPHA L S, TERMTANUN M, et al. Adsorption of chromium (Ⅵ) and iron (Ⅲ) ions onto acid-modified kaolinite: isotherm, kinetics and thermodynamics studies[J]. Arabian Journal of Chemistry, 2021, 14(4): 103064. doi: 10.1016/j.arabjc.2021.103064
    [19]
    ZHU S, KHAN M A, WANG F, et al. Exploration of adsorption mechanism of 2-phosphonobutane-1, 2, 4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies[J]. Journal Hazard Mater, 2021, 403: 123810. doi: 10.1016/j.jhazmat.2020.123810
    [20]
    BANDOSE T J. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide[J]. Carbon, 1999, 37: 483-491. doi: 10.1016/S0008-6223(98)00217-6
    [21]
    MOHAMMADI R, AZADMEHR A, MAGHSOUDI A, et al. Enhanced competitive adsorption of zinc and manganese by alginate-iron oxide-combusted coal gangue composite: synthesizing, characterization and investigation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105003. doi: 10.1016/j.jece.2020.105003
    [22]
    HERMOSA G C, LIAO C S, WANG S F, et al. Methyl orange adsorption onto magnetic Fe3O4/carbon (AC, GO, PGO) nanocomposites[J]. J Nanosci Nanotechnol, 2021, 21(11): 5756-5764. doi: 10.1166/jnn.2021.19494
    [23]
    吴大清, 刁桂仪, 魏俊峰, 等. 矿物表面基团与表面作用[J]. 高校地质学报, 2000(2): 225-232. doi: 10.3969/j.issn.1006-7493.2000.02.019

    WU D Q, DIAO G Y, WEI J F, et al. Mineral surface groups and surface interaction[J]. Geological Journal of Universities, 2000(2): 225-232. (in Chinese) doi: 10.3969/j.issn.1006-7493.2000.02.019
    [24]
    CHEN T, ZHANG Y, WANG H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology, 2014, 164: 47-54. doi: 10.1016/j.biortech.2014.04.048
    [25]
    李静, 鲍东杰, 田云阁, 等. 纳米二氧化锰@还原氧化石墨烯对水中Pb(Ⅱ)的吸附性能与吸附机制研究[J]. 化工新型材料, 2021, 49(2): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202102046.htm

    LI J, BAO D J, TIAN Y G, et al. Adsorption performance and mechanism of Pb (Ⅱ) onnan-MnO2 @ RGO[J]. New Chemical Materials, 2021, 49(2): 195-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202102046.htm
    [26]
    郑慧玲. 功能化氧化石墨烯复合材料的制备及其对污染物吸附研究[D]. 合肥: 中国科学技术大学, 2020.

    ZHENG H L. Preparation of functional oxidized graphene composites and their adsorption for pollutants[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
    [27]
    牛鹏举, 魏世勇, 方敦, 等. 高岭石、针铁矿及其二元体对胡敏酸的吸附特性[J]. 环境科学, 2016, 37(6): 2220-2228. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201606027.htm

    NIU P J, WEI S Y, FANG D, et al. Adsorption characteristics for humic acid by binary systems containing kaolinite and goethite[J]. Environmental Science, 2016, 37(6): 2220-2228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201606027.htm
    [28]
    李旭东, 毛志成, 谢翼飞, 等. 草木灰对Cd2+废水吸附性能和动力学特征研究[J]. 东北农业大学学报, 2013, 44(8): 39-42. doi: 10.3969/j.issn.1005-9369.2013.08.007

    LI X D, MAO Z C, XIE Y F, et al. Study on adsorption capacity and kinetic characteristics of plant ash for Cd2+ in sewage water[J]. Journal of Northeast Agricultural University, 2013, 44(8): 39-42. (in Chinese) doi: 10.3969/j.issn.1005-9369.2013.08.007
    [29]
    ABDURAHMAN A, CUI K, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: kinetic, isotherm and site energy distribution analysis[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658
    [30]
    JABLOИ́SKA B. Sorption of phenol on rock components occurring in mine drainage water sediments[J]. International Journal of Mineral Processing, 2012, 104/105: 71-79. doi: 10.1016/j.minpro.2011.12.008
    [31]
    WANG H J, WANG X L, WANG L X. Adsorption performance of methylene blue on modified coal gangue[J]. Advanced Materials Research, 2013, 807/808/809: 521-525.
    [32]
    王春芳, 刘文君, 张屹. 多种活性炭对目标有机物吸附特性影响因素的研究[J]. 给水排水, 2016, 52(2): 22-30. doi: 10.3969/j.issn.1002-8471.2016.02.005

    WANG C F, LIU W J, ZHANG Y. Research on the influencing factors of various activated carbons on the adsorption characteristics of target organic compounds[J]. Water and Wastewater Engineering, 2016, 52(2): 22-30. (in Chinese) doi: 10.3969/j.issn.1002-8471.2016.02.005
    [33]
    徐明, 阳柠灿, 邱木清. 天然沸石对染料的吸附研究[J]. 绿色科技, 2020(12): 142-144. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ202012051.htm

    XU M, YANG N C, QIU M Q. Study on the adsorption of dyes on natural zeolite[J]. Green Science and Technology, 2020(12): 142-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ202012051.htm
    [34]
    YANG K, YAN L G, YANG Y M, et al. Adsorptive removal of phosphate by Mg-Al and Zn-Al layered double hydroxides: kinetics, isotherms and mechanisms[J]. Separation and Purification Technology, 2014, 124: 36-42. doi: 10.1016/j.seppur.2013.12.042
    [35]
    WEI L, WANG K, ZHAO Q, et al. Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash[J]. Journal of Environmental Sciences, 2011, 23(7): 1057-1065. doi: 10.1016/S1001-0742(10)60597-9
    [36]
    张新. 煤矸石吸附材料结构调控与吸附行为研究[D]. 西安: 西安科技大学, 2020.

    ZHANG X. Study on structure regulation and adsorption behavior of coal gangue adsorption materials[D]. Xi'an : Xi'an University of Science and Technology, 2020. (in Chinese)
    [37]
    KAVAK D D, ULKU S. Kinetic and equilibrium studies of adsorption of β-glucuronidase by clinoptilolite-rich minerals[J]. Process Biochemistry, 2015, 50(2): 221-229. doi: 10.1016/j.procbio.2014.12.013
  • Cited by

    Periodical cited type(1)

    1. 赵康,伍俊,马超,朱开成,聂晶磊,胡华龙. 我国煤矿固、液、气“三废”地质封存研究现状与生态环境协同发展的关系. 煤炭学报. 2024(06): 2785-2798 .

    Other cited types(4)

Catalog

    Article views (215) PDF downloads (44) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return