Citation: | WANG Meng, FAN Lifeng. Research Progress and Prospect of Stress Wave Propagation Through Rock Mass[J]. Journal of Beijing University of Technology, 2021, 47(7): 802-814. DOI: 10.11936/bjutxb2021030015 |
The study of rock mass dynamic mechanical behavior and the properties of stress wave propagation has become one of the key scientific issues. However, discontinuities of various scales ranging from micro-defects to macro-joints widely exist in natural rock mass, which affect the propagation of stress waves and lead to the attenuation of stress wave energy. The effects of micro-defects and macro-joints in rock mass on stress wave propagation are different in mechanism, fully understanding of the stress wave propagation in different scale discontinuities is of great significance to the development of rock mass engineering. First, the attenuation mechanism of stress wave propagation through micro-defected rock mass was analyzed, the wave scattering method, equivalent elastic modulus method and equivalent viscoelastic continuous medium method of stress wave propagation in micro-defected rock mass were described in detail, and the applicability, advantages and disadvantages of the methods were compared. Second, the transmission and reflection mechanism of stress wave propagation across macro-jointed rock mass was further analyzed, the displacement discontinuity method and equivalent continuum method were systematically introduced, and the advantages and disadvantages of the methods were emphatically summarized. Subsequently, the calculation methods of stress wave propagation through rock mass with double-scale discontinuities were summarized. The stress wave propagation through rock mass with double-scale discontinuities can be analyzed in the same frame, and different mechanism of micro-defect and macro-joint on stress wave propagation can be revealed by the methods. Finally, combined major national projects such as deep and polar rock mass engineering, the application of stress wave propagation method in the stability analysis of rock mass engineering under extreme environments was prospected.
[1] |
王明洋, 钱七虎. 爆炸应力波通过节理裂隙带的衰减规律[J]. 岩土工程学报, 1995, 17(2): 42-46. doi: 10.3321/j.issn:1000-4548.1995.02.006
WANG M Y, QIAN Q H. Attenuation law of explosive wave propagation in cracks[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42-46. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.02.006
|
[2] |
HUDSON J A. Attenuation due to second-order scattering in material containing cracks[J]. Geophysical Journal International, 1990, 102(2): 485-490. doi: 10.1111/j.1365-246X.1990.tb04480.x
|
[3] |
PYRAK-NOLTE L J, COOK N G W. Elastic interface waves along a fracture[J]. Geophysical Research Letters, 1987, 14(11): 1107-1110. doi: 10.1029/GL014i011p01107
|
[4] |
YU Y, DENG L, SUN X, et al. Centrifuge modeling of a dry sandy slope response to earthquake loading[J]. Bulletin of Earthquake Engineering, 2008, 6(3): 447-461. doi: 10.1007/s10518-008-9070-9
|
[5] |
YANG G, QI S, WU F, et al. Seismic amplification of the anti-dip rock slope and deformation characteristics: a large-scale shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 907-916. doi: 10.1016/j.soildyn.2017.09.010
|
[6] |
LI Z L, LI J C, LI X. Seismic interaction between a semi-cylindrical hill and a nearby underground cavity under plane SH waves[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5(4): 405-423. doi: 10.1007/s40948-019-00120-5
|
[7] |
LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2018, 52(2): 403-420. doi: 10.1007/s00603-018-1586-y.pdf
|
[8] |
ZHAO J, ZHOU Y X, HEFNY A M, et al. Rock dynamics research related to cavern development for Ammunition storage[J]. Tunnelling and Underground Space Technology, 1999, 14(4): 513-526. doi: 10.1016/S0886-7798(00)00013-4
|
[9] |
FAN L F, GAO J W, WU Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505-519. doi: 10.1016/j.applthermaleng.2018.05.074
|
[10] |
席道瑛, 谢端. 岩石中应力波传播特性的实验研究[C]//第二届全国岩石动力学学术会议论文选集. 宜昌: 中国岩石力学与工程学会岩石动力学专业委员会, 1990: 74-83.
XI D Y, XIE D. Experimental study on propagation characteristics of stress wave in rock[C]//Selected Papers of the Second National Symposium on Rock Dynamics. Yichang: Mechanics and Rock Dynamics Committee of Chinese Society for Rock Mechanics and Engineering, 1990: 74-83. (in Chinese)
|
[11] |
李祥龙, 刘殿书, 董星, 等. 岩石材料损伤与应力波参数关系研究[J]. 爆破, 2009, 26(3): 6-9. doi: 10.3963/j.issn.1001-487X.2009.03.002
LI X L, LIU D S, DONG X, et al. Study on relationship between rock material damage and stress wave parameters[J]. Blasting, 2009, 26(3): 6-9. (in Chinese) doi: 10.3963/j.issn.1001-487X.2009.03.002
|
[12] |
鞠杨, 王会杰, 杨永明, 等. 应力波作用下岩石类孔隙介质变形破坏与能量耗散机制的数值模拟研究[J]. 中国科学: 技术科学, 2010, 40(6): 711-726. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201006013.htm
JU Y, WANG H J, YANG Y M, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Science China Technological Sciences, 2010, 40(6): 711-726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201006013.htm
|
[13] |
KRENK S, SCHMIDT H. Elasticwave scattering by a circular crack[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1982, 308(1502): 167-198.
|
[14] |
SMYSHLYAEV V P, WILLIS J R. Linear and nonlinear scattering of elastic waves by microcracks[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(4): 585-610. doi: 10.1016/0022-5096(94)90053-1
|
[15] |
MURAI Y, KAWAHARA J, YAMASHITA T. Multiple scattering of SH waves in 2-D elastic media with distributed cracks[J]. Geophysical Journal International, 1995, 122(3): 925-937. doi: 10.1111/j.1365-246X.1995.tb06846.x
|
[16] |
GROENENBOOM J, FALK J. Scattering by hydraulic fractures: finite-difference modeling and laboratory data[J]. Geophysics, 2000, 65(2): 612-622. doi: 10.1190/1.1444757
|
[17] |
俞缙, 钱七虎, 赵晓豹. 岩体结构面对应力波传播规律影响的研究进展[J]. 兵工学报, 2009, 30(增刊2): 308-316. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2009S2067.htm
YU J, QIAN Q H, ZHAO X B. Research progress on effects of structural planes of rock mass on stress wave propagation law[J]. Acta Armamentarii, 2009, 30(Suppl 2): 308-316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2009S2067.htm
|
[18] |
MAL A K. Interaction of elastic waves with a penny-shaped crack[J]. International Journal of Engineering Science, 1970, 8(5): 381-388. doi: 10.1016/0020-7225(70)90075-3
|
[19] |
SÁNCHEZ-SESMA F J, ITURRARAN-VIVEROS U. Scattering and diffraction of SH waves by a finite crack: an analytical solution[J]. Geophysical Journal International, 2001, 145(3): 749-758. doi: 10.1046/j.1365-246x.2001.01426.x
|
[20] |
KRVGER O S, SAENGER E H, SHAPIRO S A. Scattering and diffraction by a single crack: an accuracy analysis of the rotated staggered grid[J]. Geophysical Journal International, 2005, 162(1): 25-31. doi: 10.1111/j.1365-246X.2005.02647.x
|
[21] |
FAN L F, MA G W, WONG L N Y. Effective viscoelastic behaviour of rock mass with double-scale discontinuities[J]. Geophysical Journal International, 2012, 191(1): 147-154. doi: 10.1111/j.1365-246X.2012.05573.x
|
[22] |
POINTER T, LIU E, HUDSON J A. Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method[J]. Geophysical Journal International, 1998, 135(1): 289-303. doi: 10.1046/j.1365-246X.1998.00644.x
|
[23] |
ITURRARÁN-VIVEROS U, VAI R, SÁNCHEZ-SESMA F J. Scattering of elastic waves by a 2-D crack using the indirect boundary element method (IBEM)[J]. Geophysical Journal International, 2005, 162(3): 927-934. doi: 10.1111/j.1365-246X.2005.02699.x
|
[24] |
ITURRARÁN-VIVEROS U, SANCHEZ-SESMA F J, LUZON F. Boundary element simulation of scattering of elastic waves by 3-D cracks[J]. Journal of Applied Geophysics, 2008, 64(3/4): 70-82. http://www.sciencedirect.com/science/article/pii/S0926985108000025
|
[25] |
CHEN T, FEHLER M, FANG X, et al. SH wave scattering from 2-D fractures using boundary element method with linear slip boundary condition[J]. Geophysical Journal International, 2012, 188(1): 371-380. doi: 10.1111/j.1365-246X.2011.05269.x
|
[26] |
HORII H, NEMAT-NASSER S. Overall moduli of solids with microcracks: load-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids, 1983, 31(2): 155-171. doi: 10.1016/0022-5096(83)90048-0
|
[27] |
ABOUDI J, BENVENISTE Y. The effective moduli of cracked bodies in plane deformations[J]. Engineering Fracture Mechanics, 1987, 26(2): 171-184. doi: 10.1016/0013-7944(87)90195-0
|
[28] |
KACHANOV M, TSUKROV I, SHAFIRO B. Effective moduli of solids with cavities of various shapes[J]. Applied Mechanics Reviews, 1994, 47(1): S151-S174.
|
[29] |
胡更开, 郑泉水, 黄筑平. 复合材料有效弹性性质分析方法[J]. 力学进展, 2001, 31(3): 361-393. doi: 10.3321/j.issn:1000-0992.2001.03.006
HU G K, ZHENG Q S, HUANG Z P. Micromechanics methods for effective elastic properties of composite materials[J]. Advances in Mechanics, 2001, 31(3): 361-393. (in Chinese) doi: 10.3321/j.issn:1000-0992.2001.03.006
|
[30] |
NGUYEN S T, TO Q D, VU M N. Extended analytical solutions for effective elastic moduli of cracked porous media[J]. Journal of Applied Geophysics, 2017, 140: 34-41. doi: 10.1016/j.jappgeo.2017.03.007
|
[31] |
ANDERSON D L, MINSTER B, COLE D. The effect of oriented cracks on seismic velocities[J]. Journal of Geophysical Research, 1974, 79(26): 4011-4015. doi: 10.1029/JB079i026p04011
|
[32] |
ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London: Series A. Mathematical and Physical Sciences, 1997, 241(1226): 376-396. http://www.ams.org/mathscinet-getitem?mr=87326
|
[33] |
HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222. doi: 10.1016/0022-5096(65)90010-4
|
[34] |
O'CONNELL R J, BUDIANSKY B. Seismic velocities in dry and saturated cracked solids[J]. Journal of Geophysical Research, 1974, 79(35): 5412-5426. doi: 10.1029/JB079i035p05412
|
[35] |
BUDIANSKY B, O'CONNELL R J. Elastic moduli of a cracked solid[J]. International Journal of Solids and Structures, 1976, 12(2): 81-97. doi: 10.1016/0020-7683(76)90044-5
|
[36] |
O'CONNELL R J, BUDIANSKY B. Viscoelastic properties of fluid-saturated cracked solids[J]. Journal of Geophysical Research, 1977, 82(36): 5719-5735. doi: 10.1029/JB082i036p05719
|
[37] |
BRUNER W M. Comment on "Seismic velocities in dry and saturated cracked solids" by Richard J. O'Connell and Bernard Budiansky[J]. Journal of Geophysical Research, 1976, 81(14): 2573-2576. doi: 10.1029/JB081i014p02573
|
[38] |
HENYEY F S, POMPHREY N. Self-consistent elastic-moduli of a cracked solid[J]. Geophysical Research Letters, 1982, 9(8): 903-906. doi: 10.1029/GL009i008p00903
|
[39] |
ZIMMERMAN R W. Elastic-moduli of a solid with spherical pores-new self-consistent method[J]. International Journal of Rock Mechanics and Mining Sciences, 1984, 21(6): 339-343. doi: 10.1016/0148-9062(84)90366-8
|
[40] |
NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1): 1-16. doi: 10.1016/0167-6636(85)90002-X
|
[41] |
KARAL F C, KELLER J B. Elastic, electromagnetic, and other waves in a random medium[J]. Journal of Mathematical Physics, 1964, 5(4): 537-547. doi: 10.1063/1.1704145
|
[42] |
HUDSON J A. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophysical Journal International, 1986, 87(1): 265-274. doi: 10.1111/j.1365-246X.1986.tb04556.x
|
[43] |
HUDSON J A. Overall properties of a cracked solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2008, 88(2): 371-384. http://gji.oxfordjournals.org/external-ref?access_num=10.1017/S0305004100057674&link_type=DOI
|
[44] |
NUR A, SIMMONS G. Stress-induced velocity anisotropy in rock: an experimental study[J]. Journal of Geophysical Research, 1969, 74(27): 6667-6674. doi: 10.1029/JB074i027p06667
|
[45] |
NUR A. Effects of stress on velocity anisotropy in rocks with cracks[J]. Journal of Geophysical Research, 1971, 76(8): 2022-2034. doi: 10.1029/JB076i008p02022
|
[46] |
HUDSON J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International, 1981, 64(1): 133-150. doi: 10.1111/j.1365-246X.1981.tb02662.x
|
[47] |
FAKHIMI A A, FAIRHURST C. A model for the time-dependent behavior of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(2): 117-126. http://www.sciencedirect.com/science/article/pii/0148906294928010
|
[48] |
JAEGER J C, COOK N G W, ZIMMERMAN R. Fundamentals of rock mechanics[M]. Fourth Edition. Malden: Blackwell Publishing, 2007.
|
[49] |
REN F, FAN L, MA G. Simulation of viscoelastic behavior of defected rock by using numerical manifold method[J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(2): 199-207. doi: 10.1007/s11709-011-0102-1
|
[50] |
COOK N G W. Natural joints in rock-mechanical, hydraulic and seismic behavior and properties under normal stress[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 198-223. http://www.sciencedirect.com/science/article/pii/0148906292936565
|
[51] |
ICHIKAWA Y, KAWAMURA K, UESUGI K, et al. Micro-and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1/2): 47-72. http://www.sciencedirect.com/science/article/pii/S0045782501002444
|
[52] |
FAN L F, REN F, MA G W. Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2011, 45(3): 433-438. doi: 10.1007/s00603-011-0197-7
|
[53] |
NGUYEN S T, DORMIEUX L. Propagation of micro-cracks in viscoelastic materials: analytical and numerical methods[J]. International Journal of Damage Mechanics, 2014, 24(4): 562-581.
|
[54] |
NIU L, ZHU W, LI S, et al. Determining the viscosity coefficient for viscoelastic wave propagation in rock bars[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1347-1359. doi: 10.1007/s00603-018-1407-3
|
[55] |
ZHOU X F, FAN L F, WU Z J. Effects of microfracture on wave propagation through rock mass[J]. International Journal of Geomechanics, 2017, 17(9): 04017072. doi: 10.1061/(ASCE)GM.1943-5622.0000947
|
[56] |
王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 157-165.
|
[57] |
WANG L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J]. International Journal of Impact Engineering, 1994, 15(5): 669-686. doi: 10.1016/0734-743X(94)90166-I
|
[58] |
朱珏, 胡时胜, 王礼立. SHPB试验中粘弹性材料的应力均匀性分析[J]. 爆炸与冲击, 2006, 26(4): 315-322. doi: 10.3321/j.issn:1001-1455.2006.04.005
ZHU J, HU S S, WANG L L. Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests[J]. Explosion and Shock Waves, 2006, 26(4): 315-322. (in Chinese) doi: 10.3321/j.issn:1001-1455.2006.04.005
|
[59] |
ZHU J, HU S S, WANG L L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J]. International Journal of Impact Engineering, 2009, 36(1): 61-72. doi: 10.1016/j.ijimpeng.2008.04.007
|
[60] |
NIU L, ZHU W, LI S, et al. Spalling of a one-dimensional viscoelastic bar induced by stress wave propagation[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104317. doi: 10.1016/j.ijrmms.2020.104317
|
[61] |
FAN L F, GAO J W, DU X L. Thermal cycling effects on micro-property variation of granite by a spatial micro-observation[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2921-2928. doi: 10.1007/s00603-020-02065-8
|
[62] |
FAN L, GAO J, DU X, et al. Spatial gradient distributions of thermal shock-induced damage to granite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 917-926. doi: 10.1016/j.jrmge.2020.05.004
|
[63] |
LIU T, LI J, LI H, et al. Experimental study of S-wave propagation through a filled rock joint[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2645-2657. doi: 10.1007/s00603-017-1250-y
|
[64] |
LI Z L, LI J C, LI H B, et al. Effects of a set of parallel joints with unequal close-open behavior on stress wave energy attenuation[J]. Waves in Random and Complex Media, 2020(2): 1-25. http://www.sciencedirect.com/science/article/pii/S2212095513000539
|
[65] |
ZOU Y, LI J, ZHAO J. A novel experimental method to investigate the seismic response of rock joints under obliquely incident wave[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3459-3466. doi: 10.1007/s00603-019-01752-5
|
[66] |
MYER L R, PYRAK-NOLTE L J, COOK N G W. Effects of single fractures on seismic wave propagation[C]//Proceedings of ISRM symposium on rock fractures. Loen: Publ Rotterdam, A A Balkema, 1990: 467-473.
|
[67] |
SINHA U, SINGH B. Testing of rock joints filled with gouge using a triaxial apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 963-981. doi: 10.1016/S1365-1609(00)00030-7
|
[68] |
LI J C, MA G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471-478. doi: 10.1016/j.ijrmms.2008.11.006
|
[69] |
WU W, ZHU J B, ZHAO J. Dynamic response of a rock fracture filled with viscoelastic materials[J]. Engineering Geology, 2013, 160: 1-7. doi: 10.1016/j.enggeo.2013.03.022
|
[70] |
LI Y, ZHU Z, LI B, et al. Study on the transmission and reflection of stress waves across joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 364-371. doi: 10.1016/j.ijrmms.2011.01.002
|
[71] |
ZHU J B, DENG X F, ZHAO X B, et al. A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC[J]. Rock Mechanics and Rock Engineering, 2012, 46(6): 1429-1442. doi: 10.1007/s00603-012-0352-9
|
[72] |
PYRAK-NOLTE L J, MYER L R, COOK N G W. Transmission of seismic waves across single natural fractures[J]. Journal of Geophysical Research, 1990, 95(B6): 8617-8638. doi: 10.1029/JB095iB06p08617
|
[73] |
CAI J G, ZHAO J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 661-682. doi: 10.1016/S1365-1609(00)00013-7
|
[74] |
ZHAO J, ZHAO X B, CAI J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 776-788. doi: 10.1016/j.ijrmms.2005.12.007
|
[75] |
PYRAK-NOLTE L J, MYER L R, COOK N G W. Anisotropy in seismic velocities and amplitudes from multiple parallel fractures[J]. Journal of Geophysical Research, 1990, 95(B7): 11345-11358. doi: 10.1029/JB095iB07p11345
|
[76] |
MILLER R K. An approximate method of analysis of the transmission of elastic waves through a frictional boundary[J]. Journal of Applied Mechanics, 1977, 44(4): 652-656. doi: 10.1115/1.3424152
|
[77] |
MINDLIN R D. Waves and vibrations in isotropic elastic plates[M]. New York: Pergamon Press, 1960: 199-232.
|
[78] |
SCHOENBERG M. Elastic wave behavior across linear slip interfaces[J]. Journal of the Acoustical Society of America, 1980, 68(5): 1516-1521. doi: 10.1121/1.385077
|
[79] |
PYRAK-NOLTE L J. Seismic visibility of fractures[D]. Berkeley: University of California, Berkeley, 1988.
|
[80] |
ZHAO X B, ZHU J B, ZHAO J, et al. Study of wave attenuation across parallel fractures using propagator matrix method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(10): 1264-1279. doi: 10.1002/nag.1050
|
[81] |
PYRAK-NOLTE L J. The seismic response of fractures and the interrelations among fracture properties[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(8): 787-802. http://www.sciencedirect.com/science/article/pii/S0148906296000228
|
[82] |
YI W, NIHEI K T, RECTOR J W, et al. Frequency-dependent seismic anisotropy in fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 349. e1-349. e12. http://www.sciencedirect.com/science/article/pii/S1365160997002876
|
[83] |
BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1983, 20(6): 249-268. doi: 10.1016/0148-9062(83)90595-8
|
[84] |
BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121-140. http://www.sciencedirect.com/science/article/pii/0148906285932279
|
[85] |
王卫华, 李夕兵, 左宇军. 非线性法向变形节理对弹性纵波传播的影响[J]. 岩石力学与工程学报, 2006, 25(6): 1218-1225. doi: 10.3321/j.issn:1000-6915.2006.06.020
WANG W H, LI X B, ZUO Y J. Effects of single joint with nonlinear normal deformation on P-wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1218-1225. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.020
|
[86] |
MA G W, LI J C, ZHAO J. Three-phase medium model for filled rock joint and interaction with stress waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(1): 97-110. doi: 10.1002/nag.941
|
[87] |
宋林, 闫玉湛, 韩八晓, 等. 非线性变形节理中纵波传播特性的理论研究[J]. 应用力学学报, 2012, 29(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201202003.htm
SONG L, YAN Y Z, HAN B X, et al. Theoretical research into the wave propagation of P-wave across rock joint with nonlinear deformation[J]. Chinese Journal of Applied Mechanics, 2012, 29(2): 133-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201202003.htm
|
[88] |
LI X F, LI H B, LI J C, et al. Research on transient wave propagation across nonlinear joints filled with granular materials[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2373-2393. doi: 10.1007/s00603-018-1471-8
|
[89] |
FAN L F, MA G W, LI J C. Nonlinear viscoelastic medium equivalence for stress wave propagation in a jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 11-18. doi: 10.1016/j.ijrmms.2011.12.008
|
[90] |
ZHAO J, CAI J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J]. Rock Mechanics and Rock Engineering, 2001, 34(1): 3-22. doi: 10.1007/s006030170023
|
[91] |
ZHAO X B, ZHAO J, CAI J G. P-wave transmission across fractures with nonlinear deformational behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1097-1112. doi: 10.1002/nag.515
|
[92] |
俞缙, 关云飞, 肖琳, 等. 弹性纵波在不同非线性法向变形行为节理处的传播[J]. 解放军理工大学(自然科学版), 2007, 8(6): 589-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706007.htm
YU J, GUAN Y F, XIAO L, et al. Transmission of elastic P-wave across single fracture with different nonlinear normal deformation behaviors[J]. Journal of PLA University of Science and Technology, 2007, 8(6): 589-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706007.htm
|
[93] |
俞缙, 赵晓豹, 赵维炳, 等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报, 2008, 30(9): 1316-1321. doi: 10.3321/j.issn:1000-4548.2008.09.009
YU J, ZHAO X B, ZHAO W B, et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1316-1321. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.009
|
[94] |
俞缙, 钱七虎, 林从谋. 纵波在改进的弹性非线性法向变形行为单节理处的传播特性研究[J]. 岩土工程学报, 2009, 31(8): 1156-1164. doi: 10.3321/j.issn:1000-4548.2009.08.002
YU J, QIAN Q H, LIN C M. Transmission of elastic P-wave across one fracture with improved nonlinear normal deformation behaviors[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1156-1164. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.002
|
[95] |
俞缙, 林从谋, 赵晓豹. 岩体节理非线性法向循环加载本构模型的改进[J]. 华侨大学学报(自然科学版), 2009, 30(6): 694-697. https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB200906021.htm
YU J, LIN C M, ZHAO X B. Improvement of nonlinear constitutive model for rock fractures under normal cyclic loading[J]. Journal of Huaqiao University (Natural Science), 2009, 30(6): 694-697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB200906021.htm
|
[96] |
荣冠, 黄凯, 周创兵, 等. 岩石节理法向加载非线性变形本构模型研究[J]. 中国科学: 技术科学, 2012, 42(4): 402-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201204007.htm
RONG G, HUANG K, ZHOU C B, et al. A new constitutive law for the nonlinear normal deformation of rock joints under normal load[J]. Science China (Technological Sciences), 2012, 42(4): 402-414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201204007.htm
|
[97] |
LI J C. Wave propagation across non-linear rock joints based on time-domain recursive method[J]. Geophysical Journal International, 2013, 193(2): 970-985. doi: 10.1093/gji/ggt020
|
[98] |
FAN L F, WANG L J, WU Z J. Wave transmission across linearly jointed complex rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 193-200. doi: 10.1016/j.ijrmms.2018.09.004
|
[99] |
FAN L F, WANG L J, WANG M, et al. Investigation of stress wave transmission across a nonlinearly jointed complex rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104485. doi: 10.1016/j.ijrmms.2020.104485
|
[100] |
FOSSUM A F. Effective elastic properties for a randomly jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(6): 467-470. http://www.sciencedirect.com/science/article/pii/0148906285900117
|
[101] |
CICCOTTI M, MULARGIA E. Differences between static and dynamic elastic moduli of a typical seismogenic rock[J]. Geophysical Journal International, 2004, 157(1): 474-477. doi: 10.1111/j.1365-246X.2004.02213.x
|
[102] |
MA G W, FAN L F, LI J C. Evaluation of equivalent medium methods for stress wave propagation in jointed rock mass[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(7): 701-715. doi: 10.1002/nag.1118
|
[103] |
SCHOENBERG M. Reflection of elastic waves from periodically stratified media with interfacial slip[J]. Geophysical Prospecting, 1983, 31(2): 265-292. doi: 10.1111/j.1365-2478.1983.tb01054.x
|
[104] |
AMADEI B, GOODMAN R E. A 3-D constitutive relation for fractured rock masses[C]//Proceedings of the International Symposium on the Mechanical Behavior of Structured Media. Ottawa: Elsevier Scientific Publishing Company, 1981: 249-268.
|
[105] |
LI J C, MA G W, ZHAO J. An equivalent viscoelastic model for rock mass with parallel joints[J]. Journal of Geophysical Research-Solid Earth, 2010, 115(B3): B03305. doi: 10.1029/2008jb006241
|
[106] |
LI J C, LI H B, ZHAO J. An improved equivalent viscoelastic medium method for wave propagation across layered rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 62-69. doi: 10.1016/j.ijrmms.2014.10.008
|
[107] |
徐松林, 刘永贵, 席道瑛. 岩石物理与动力学原理[M]. 北京: 科学出版社, 2019.
|
[108] |
FAN L F, YI X W, MA G W. Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock mass[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350022. doi: 10.1142/S1758825113500221
|
[109] |
俞缙, 宋博学, 钱七虎. 含单组节理的双重非线性弹性岩石介质中的P波传播规律[J]. 岩石力学与工程学报, 2012, 31(12): 2400-2411. doi: 10.3969/j.issn.1000-6915.2012.12.003
YU J, SONG B X, QIAN Q H. Study of propagation of P-waves in dual nonlinear elastic rock medium with one set of joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2400-2411. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.003
|
[110] |
HUANG X, QI S, LIU Y, et al. Stress wave propagation through viscous-elastic jointed rock masses using propagator matrix method (PMM)[J]. Geophysical Journal International, 2015, 200(1): 452-470.
|
[111] |
FAN L F, REN F, MA G W. An extended displacement discontinuity method for analysis of stress wave propagation in viscoelastic rock mass[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(1): 73-81. doi: 10.3724/SP.J.1235.2011.00073
|
[112] |
FAN L F, WANG M, WU Z J. A split three-characteristics method for stress wave propagation through a rock mass with double-scale discontinuities[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5767-5779. doi: 10.1007/s00603-020-02233-w
|
[113] |
FAN L F, WANG M, WU Z J. Effect of nonlinear deformational macrojoint on stress wave propagation through a double-scale discontinuous rock mass[J]. Rock Mechanics and Rock Engineering, 2020, 54(3): 1077-1090. doi: 10.1007/s00603-020-02308-8
|