• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
LI Jian, ZHAO Jing, CAI Jianyu, CHEN Pubo. Research Progress of CO Selective Catalytic Reduction of NOx Under Oxygen Conditions[J]. Journal of Beijing University of Technology, 2022, 48(11): 1208-1214. DOI: 10.11936/bjutxb2021030004
Citation: LI Jian, ZHAO Jing, CAI Jianyu, CHEN Pubo. Research Progress of CO Selective Catalytic Reduction of NOx Under Oxygen Conditions[J]. Journal of Beijing University of Technology, 2022, 48(11): 1208-1214. DOI: 10.11936/bjutxb2021030004

Research Progress of CO Selective Catalytic Reduction of NOx Under Oxygen Conditions

More Information
  • Received Date: March 01, 2021
  • Revised Date: July 01, 2021
  • Available Online: November 08, 2022
  • The research status of CO selective catalytic reduction (CO-SCR) catalysts under oxygen conditions in recent years was introduced. The research progress of Ir-based, Pd-based, Cu-based and Co-based catalysts was mainly introduced. The influence of type of carrier, doping modification and active component on the catalyst activity was analyzed. The effects of H2O and SO2 on the activity of catalysts were investigated, and the reaction mechanism of CO-SCR was investigated to provide reference for improving the active of CO-SCR catalysts under oxygen condition. Finally, it is pointed out that it is the possible research directions of CO-SCR in the reaction mechanism of O2 and the toxic mechanism of SO2 and H2O on the catalyst under oxygen condition in the future.

  • [1]
    DUAN C, GUO R, LIU Y, et al. Enhancement of kalium resistance of Ce-Ti oxide catalyst for NH3-SCR reaction by modification with holmium[J/OL]. Journal of Rare Earths. [2021-12-20]. https://doi.org/10.1016/j.jre. 2020.10.018.
    [2]
    LIU X, LI S, SUN M, et al. Preparation, characterization and low-temperature NH3-SCR activity of MNOx/SAPO-11 catalysts[J]. Acta Physic-Chimica Sinica, 2016, 32(5): 1236-1246. doi: 10.3866/PKU.WHXB201602251
    [3]
    张国祥, 陈晓晖. 富氧条件下金属催化CO还原NO的研究进展[J]. 化工进展, 2018, 37(12): 4654-4661. doi: 10.16085/j.issn.1000-6613.2018-0080

    ZHANG G X, CHEN X H. Research progress in metal catalysts for catalytic reduction of NO by CO with excess oxygen[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4654-4661. (in Chinese) doi: 10.16085/j.issn.1000-6613.2018-0080
    [4]
    陈霞, 张俊丰. CO低温催化还原氮氧化物的研究进展[J]. 工业催化, 2008(11): 6-11. doi: 10.3969/j.issn.1008-1143.2008.11.002

    CHEN X, ZHANG J F. Research progress in CO low temperature catalytic reduction of NOx[J]. Industrial Catalysis, 2008(11): 6-11. (in Chinese) doi: 10.3969/j.issn.1008-1143.2008.11.002
    [5]
    JEON J, KON K, TOYAO T, et al. Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction[J]. Chemical Science, 2019, 10(15): 4148-4162. doi: 10.1039/C8SC05496G
    [6]
    DESAI M S F, KERKAR R D, SALKER A V. Detoxification of NO and CO gases over effectively substituted Pd and Rh in cupric oxide catalysts[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1541-1550. doi: 10.1007/s13762-018-1744-5
    [7]
    SHIN H U, LOLLA D, NIKOLOV Z, et al. Pd-Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 91-98. doi: 10.1016/j.jiec.2015.09.020
    [8]
    IMAI S, MIURA H, SHISHIDO T. Selective catalytic reduction of NO with CO and C3H6 over Rh/NbOPO4[J]. Catalysis Today, 2019, 332: 267-271. doi: 10.1016/j.cattod.2018.07.027
    [9]
    KIBIS L S, SVINTSITSKIY D A, DEREVYANNIKOVA E A, et al. From highly dispersed Rh3+ to nanoclusters and nanoparticles: probing the low-temperature NO+CO activity of Rh-doped CeO2 catalysts[J]. Applied Surface Science, 2019, 493: 1055-1066. doi: 10.1016/j.apsusc.2019.07.043
    [10]
    SUN J, GE C, YAO X, et al. Influence of different impregnation modes on the properties of CuO-CeO2/γ-Al2O3 catalysts for NO reduction by CO[J]. Applied Surface Science, 2017, 426: 279-286. doi: 10.1016/j.apsusc.2017.07.069
    [11]
    DENG C, HUANG Q, ZHU X, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. doi: 10.1016/j.apsusc.2016.08.035
    [12]
    BAI Y, BIAN X, WU W. Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO[J]. Applied Surface Science, 2019, 463: 435-444. doi: 10.1016/j.apsusc.2018.08.229
    [13]
    WANG L, CHENG X, WANG Z, et al. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO[J]. Applied Catalysis B: Environmental, 2017, 201: 636-651. doi: 10.1016/j.apcatb.2016.08.021
    [14]
    ILIEVA L, PANTALEO G, VELINOV N, et al. NO reduction by CO over gold catalysts supported on Fe-loaded ceria[J]. Applied Catalysis B: Environmental, 2015, 174-175: 176-184. doi: 10.1016/j.apcatb.2015.03.004
    [15]
    ZHANG X, MA C, CHENG X, et al. Performance of Fe-Ba/ZSM-5 catalysts in NO+O2 adsorption and NO+CO reduction[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7077-7088. doi: 10.1016/j.ijhydene.2017.01.067
    [16]
    CHENG X, WANG L, WANG Z, et al. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12710-12722.
    [17]
    宋晓敏, 杨家金. 利用烧结烟气中CO选择性催化还原NOx的研究[J]. 四川化工, 2019, 22(2): 49-51. doi: 10.3969/j.issn.1672-4887.2019.02.015

    SONG X M, YANG J J. Reduction of NOx by CO selective catalysis in sintered flue gas[J]. Sichuan Chemical Industry, 2019, 22(2): 49-51. (in Chinese) doi: 10.3969/j.issn.1672-4887.2019.02.015
    [18]
    王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019, 27(2): 1-23. doi: 10.3969/j.issn.1008-1143.2019.02.001

    WANG X W, LI L L, SUN J F, et al. Analysis of NOx emission and control in China and research progress in denitration catalysts[J]. Industrial Catalysis, 2019, 27(2): 1-23. (in Chinese) doi: 10.3969/j.issn.1008-1143.2019.02.001
    [19]
    TAUSTER S J, MURRELL L L. The NO+CO reaction in the presence of excess O2 as catalyzed by iridium[J]. Journal of Catalysis, 1976, 41(1): 192-195. doi: 10.1016/0021-9517(76)90216-5
    [20]
    INOMATA H, SHIMOKAWABE M, ARAI M. An Ir/WO3 catalyst for selective reduction of NO with CO in the presence of O2 and/or SO2[J]. Applied Catalysis A: General, 2007, 332(1): 146-152. doi: 10.1016/j.apcata.2007.08.013
    [21]
    SASAKI M, SULTANA A, HANEDA M, et al. Practical evaluation of the catalytic performance of Ir/SiO2-based catalysts for selective reduction of NO with CO[J]. Topics in Catalysis, 2009, 52(13/14/15/16/17/18/19/20): 1803-1807.
    [22]
    NANBA T, WADA K, MASUKAWA S, et al. Enhancement of activity of Ir catalysts for selective catalytic reduction of NO with CO by physical mixing with SiO2[J]. Applied Catalysis A: General, 2010, 380(1/2): 66-71.
    [23]
    YOU Y, KIM Y J, LEE J H, et al. Unraveling the origin of extraordinary lean NOx reduction by CO over Ir-Ru bimetallic catalyst at low temperature[J]. Applied Catalysis B: Environmental, 2021, 280: 119374. doi: 10.1016/j.apcatb.2020.119374
    [24]
    CHEN L F, GONZALEZ G, WANG J A, et al. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen[J]. Applied Surface Science, 2005, 243(1/2/3/4): 319-328.
    [25]
    IGLESIAS-JUEZ A, KUBACKA A, FERNÁNDEZ-GARCÍA M, et al. Nanoparticulate Pd supported catalysts: size-dependent formation of Pd(Ⅰ)/Pd(0) and their role in CO elimination[J]. Journal of the American Chemical Society, 2011, 133(12): 4484-4489. doi: 10.1021/ja110320y
    [26]
    LIU H, LIANG Q, LIU J, et al. Promotional mechanism of activity via three-dimensional ordered macroporous Cu-doped Ce-Fe mixed oxides for the CO-SCR reaction[J]. Environmental Science: Nano, 2020, 7(10): 3136-3154. doi: 10.1039/D0EN00696C
    [27]
    PAN K L, YOUNG C W, PAN G T, et al. Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts[J]. Catalysis Today, 2019, 348: 15-25.
    [28]
    DEFU W, HUANG B, LONG H, et al. Low-temperature denitrification performance of Cu2O/activated carbon catalysts for selective catalytic reduction of NOx by CO[J]. Journal of Donghua University(English Edition), 2020, 37(5): 382-388.
    [29]
    ZHANG Y, ZHAO L, DUAN J, et al. Insights into de NOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS[J]. Separation and Purification Technology, 2020, 234: 116081. doi: 10.1016/j.seppur.2019.116081
    [30]
    刘凯杰, 于庆波, 王奎明, 等. 低温下CO选择性催化还原NOx的实验研究[J]. 东北大学学报(自然科学版), 2017, 38(7): 972-977. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707013.htm

    LIU K J, YU Q B, WANG K M, et al. Experimental study on selective catalytic reduction of NOx with CO at low-temperature[J]. Journal of Northeastern University(Natural Science), 2017, 38(7): 972-977. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707013.htm
    [31]
    周远松, 高凤雨, 唐晓龙, 等. 金属氧化物催化CO还原NO的研究进展[J]. 化工进展, 2019, 38(11): 4941-4948. doi: 10.16085/j.issn.1000-6613.2019-0195

    ZHOU Y S, GAO F Y, TANG X L, et al. Research progress on NO reduction by CO over metal oxide catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4941-4948. (in Chinese) doi: 10.16085/j.issn.1000-6613.2019-0195
    [32]
    仲雪梅, 张涛, 李佳荫, 等. 不同方法制备Co3O4催化剂CO-SCR性能及机制[J]. 环境科学, 2019, 40(9): 3982-3989. doi: 10.3969/j.issn.1000-6923.2019.09.046

    ZHONG X M, ZHANG T, LI J Y, et al. CO-SCR performance and mechanism over Co3O4 catalysts[J]. Environmental Science, 2019, 40(9): 3982-3989. (in Chinese) doi: 10.3969/j.issn.1000-6923.2019.09.046
    [33]
    SALKER A V, FAL DESAI M S. Low-temperature nitric oxide reduction over silver-substituted cobalt oxide spinels[J]. Catalysis Science & Technology, 2016, 6(2): 430-433.
    [34]
    SALKER A V, DESAI M S F. Catalytic activity and mechanistic approach of NO reduction by CO over M0.05Co2.95O4 (M=Rh, Pd & Ru) spinel system[J]. Applied Surface Science, 2016, 389: 344-353. doi: 10.1016/j.apsusc.2016.07.121
    [35]
    付玉秀, 仲雪梅, 常化振, 等. 铈钴复合氧化物催化剂催化CO-SCR反应机理研究[J]. 中国环境科学, 2018, 38(8): 2934-2940. doi: 10.3969/j.issn.1000-6923.2018.08.018

    FU Y X, ZHONG X M, CHANG H Z, et al. Mechanism study on CO-SCR over Ce-Co-Ox mixed oxides catalysts[J]. China Environmental Science, 2018, 38(8): 2934-2940. (in Chinese) doi: 10.3969/j.issn.1000-6923.2018.08.018
    [36]
    SONG J H, PARK D C, YOU Y, et al. Kinetic and DRIFTS studies of IrRu/Al2O3 catalysts for lean NOx reduction by CO at low temperature[J]. Catalysis Science & Technology, 2020, 10(24): 8182-8195.
    [37]
    SONG J H, PARK D C, YOU Y, et al. Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir∶Ru ratios[J]. Catalysis Science & Technology, 2020, 10(7): 2120-2136.
    [38]
    SREEKANTH P M, SMIRNIOTIS P G. Selective reduction of NO with CO over titania supported transition metal oxide catalysts[J]. Catalysis Letters, 2008, 122: 37-42. doi: 10.1007/s10562-007-9365-5
    [39]
    BONINGARI T, PAVANI S M, ETTIREDDY P R, et al. Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures[J]. Molecular Catalysis, 2018, 451: 33-42. doi: 10.1016/j.mcat.2017.10.017
    [40]
    HANEDA M, HAMADA H. Promotional role of H2O in the selective catalytic reduction of NO with CO over Ir/WO3/SiO2 catalyst[J]. Journal of Catalysis, 2010, 273(1): 39-49. doi: 10.1016/j.jcat.2010.04.021
    [41]
    GUO L, LIU L, ZHU X, et al. Effect of Mg/Al molar ratios on NO reduction activity of CO using Ce-La/MgAl2O4-x catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 723-730. doi: 10.1016/S1872-5813(17)30036-1
    [42]
    郭丽丽, 张强, 刘璐, 等. Ce-La/Al2O3催化CO还原NO性能的研究[J]. 石化技术与应用, 2016, 34(6): 445-451. doi: 10.3969/j.issn.1009-0045.2016.06.001

    GUO L L, ZHANG Q, LIU L, et al. Study on no reduction by CO over Ce-La/Al2O3 catalyst[J]. Petrochemical Technology & Application, 2016, 34(6): 445-451. (in Chinese) doi: 10.3969/j.issn.1009-0045.2016.06.001
    [43]
    QIN Y, SUN L, ZHANG D, et al. Role of ceria in the improvement of SO2 resistance of LaxCe1-xFeO3 catalysts for catalytic reduction of NO with CO[J]. Catalysis Communications, 2016, 79: 53-57. doi: 10.1016/j.catcom.2016.03.005
    [44]
    陈小根, 张茹杰, 沈伯雄, 等. 以CO为还原剂的选择性催化还原NO催化剂研究进展[J]. 现代化工, 2020, 40(5): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202005018.htm

    CHEN X G, ZHANG R J, SHEN B X, et al. Research progress in catalysts for selective catalytic reduction of NO with CO as reductant[J]. Modern Chemical Industry, 2020, 40(5): 68-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202005018.htm
    [45]
    柯希玮, 王康, 王志宁, 等. CaO表面CO对NO还原作用的实验与模型研究[J]. 工程热物理学报, 2020, 41(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202001031.htm

    KE X W, WANG K, WANG Z N, et al. Experimental and kinetic studies on the NO reduction by CO over CaO particle surfaces[J]. Journal of Engineering Thermophysics, 2020, 41(1): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202001031.htm
    [46]
    GRANGER P, PARVULESCU V I. Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies[J]. Chemical Reviews, 2011, 111(5): 3155-3207. doi: 10.1021/cr100168g
  • Related Articles

    [1]ZHU Xingyi, WU Yanan, BAI Shunjie, CHEN Long. Aircraft Skid Resistance Failure Risk Assessment Based on Virtual Prototype in Wet Sliding State[J]. Journal of Beijing University of Technology, 2022, 48(6): 644-654. DOI: 10.11936/bjutxb2022010008
    [2]YAO Li-yang, HE Zhong-mao, MA Qin. Influence of Saturated Water Ratio on Rutting Resistance of Porous Asphalt[J]. Journal of Beijing University of Technology, 2013, 39(2): 227-232.
    [3]LI Bing, ZHANG Ding-li. Analysis of Water Inrush Danger of Subsea Tunnel Based on Water Inrush Coefficient of Water-resisting Key Strata[J]. Journal of Beijing University of Technology, 2011, 37(9): 1354-1359.
    [4]Li Xinghu, Jin Kecheng, Guo Changlu, Wang Zheng, Li Jianguo. A Test Study for the NOx Emission Difference of Cylinders in a 492QC Spark Ignition Engine[J]. Journal of Beijing University of Technology, 1999, 25(4): 40-44.
    [5]Ma Zhongli, Zhu Hongyuan, Zhang Jintao, Tang Lingfeng, Su Yinglong, Zhang Xuekun, Cui Yanhong, Ma Daini. Study on Cr27 Wear Resistant White Cast Iron and Its Application[J]. Journal of Beijing University of Technology, 1999, 25(1): 88-93.
    [6]Zhong Rugang, Zheng Dawei, Fang Fang, Zhen Yan, Li Peiheng, Zheng Jingying, Dai Qianhuan. The Influence of Gas Combustion in Kitchen on Concentration of Nitrogen Oxides in Indoor Air[J]. Journal of Beijing University of Technology, 1997, 23(2): 70-74.
    [7]Wang Shusen, Lin Ailian, Wang Zhizhong, Wu Xuhong. The Recovery of Elemental Sulfur from Waste Gases Containing SO2[J]. Journal of Beijing University of Technology, 1991, 17(4): 76-81,86.
    [8]Huang Xiaolin Ceng Qibo Li Liyan, . Study on Chemical Property of La1-xSrxCo1-yMoyO3 Type Oxidation Catalysts[J]. Journal of Beijing University of Technology, 1990, 16(1): 79-82.
    [10]Li Wan, Liu Chang-lin, Hao Jing-hua, Ma Qing-yuan. The Preparation of Low Temperature Converter Used in NOX Chemiluminescence[J]. Journal of Beijing University of Technology, 1982, 8(4): 79-84.
  • Cited by

    Periodical cited type(1)

    1. 保德山,任梵,张秋林. 焦炉烟气低温钒系NH_3-SCR脱硝应用与展望. 云南化工. 2024(03): 13-15+27 .

    Other cited types(0)

Catalog

    Article views (376) PDF downloads (65) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return