• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
WANG Wei. Rheological Properties of Modified Asphalt With Warm-mixed Anti-rutting Agent[J]. Journal of Beijing University of Technology, 2022, 48(2): 129-136. DOI: 10.11936/bjutxb2021020014
Citation: WANG Wei. Rheological Properties of Modified Asphalt With Warm-mixed Anti-rutting Agent[J]. Journal of Beijing University of Technology, 2022, 48(2): 129-136. DOI: 10.11936/bjutxb2021020014

Rheological Properties of Modified Asphalt With Warm-mixed Anti-rutting Agent

More Information
  • Received Date: February 25, 2021
  • Revised Date: April 22, 2021
  • Available Online: August 03, 2022
  • Published Date: February 09, 2022
  • Traditional anti-rutting agents are a kind of polymer additive with polyolefin as the main component. However, the poor compatibility between anti-rutting agent with asphalt binder is still a technical problem. To explore whether modified wax materials with good compatibility with asphalt and high melting point have the potential to be adopted in the preparation of warm-mixed anti-rutting agent, series of warm-mixed anti-rutting agents were obtained by mixing traditional polyolefin anti-rutting agents with high temperature wax in different proportions. Four kinds of anti-rutting agents were added with the dosage of 3%, 6%, and 9%, respectively, thus twelve modified asphalts were prepared with the above anti-rutting agents. Dynamic shear rheometer (DSR) was employed to perform the temperature sweep tests, frequency sweep tests and multiple stress creep recovery (MSCR) tests on the above asphalts. The aim of the tests was to analyze the influence of high temperature wax on the melt fluidity performance of anti-rutting agent and also identify suitable evaluation index for anti-rutting agent modified asphalt. Result shows that there is a linear correlation between wax content and melt mass-flow rate (MFR). When the temperature is below the melting point of high temperature wax, MFR decreases as the proportion of high-temperature wax increases. When the temperature is higher than the melting point, MFR increases as the proportion increases. In view of the high melting point of wax mass component, the addition of high temperature wax could help to improve the high temperature performance of anti-rutting agent modified asphalts. The higher ratio of wax in warm-mixed anti-rutting agent, the better the high temperature performance of modified asphalts. Warm-mixed anti-rutting agent with 30% wax content has the best improvement on the high temperature performance of modified asphalts in this study.As to the high elastic characteristics of anti-rutting agent modified asphalt, rutting factor and Jnr3.2 are more suitable to be adopted as high temperature performance evaluation indicators among different rheological evaluation parameters.

  • [1]
    张鹏, 黄建平, 尹乃玉. PCF抗车辙剂改性沥青混合料性能评价与蠕变特性研究[J]. 公路, 2020(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001035.htm

    ZHANG P, HUANG J P, YIN N Y. Pavement performance evaluation and creep properties study of asphalt mixture modified by anti-rutting agent PCF[J]. Highway, 2020(1): 184-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001035.htm
    [2]
    黄晓明, 范要武, 赵永利, 等. 高速公路沥青路面高温车辙的调查与试验分析[J]. 公路交通科技, 2007, 24(5): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705003.htm

    HUANG X M, FAN Y W, ZHAO Y L, et al. Investigation and test of expressway asphalt pavement high temperature performance[J]. Journal of Highway and Transportation Research and Development, 2007, 24(5): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705003.htm
    [3]
    蒋功雪, 彭红卫, 孙超林, 等. 湖南省高速公路沥青路面车辙病害调查与原因分析[J]. 公路工程, 2011, 36(1): 1-3, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201101002.htm

    JIANG G X, PENG H W, SUN C L, etal. Investigation and cause analysis on rutting of highway asphalt pavement in hunan province[J]. Highway Engineering, 2011, 36(1): 1-3, 7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201101002.htm
    [4]
    李济鲈. 沥青路面车辙病害形成机理及防控因素分析[D]. 长春: 吉林大学, 2019.

    LI J L. Analysis on formation mechanism and prevention & control factors of rutting disease of asphalt pavement[D]. Changchun: Jilin University, 2019. (in Chinese)
    [5]
    任万艳, 韩森, 贾锦绣, 等. 粒化聚合物抗车辙剂对沥青和沥青混合料的改性机理[J]. 材料导报, 2017, 31(10): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201720028.htm

    REN W Y, HAN S, JIA J X, et al. Modification mechanisms of granulated polymer anti-rutting additive toward asphalt and asphalt mixture[J]. Materials Reports, 2017, 31(10): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201720028.htm
    [6]
    马峰, 张昭区, 傅珍, 等. 抗车辙剂改性沥青混合料制备方法对其高温性能的影响[J]. 筑路机械与施工机械化, 2019, 36: 41-44, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201908007.htm

    MA F, ZHANG Z Q, FU Z, et al. Effect of preparation method on high temperature performance of anti-rutting agent modified asphalt mixture[J]. Road Machinery & Construction Mechanization, 2019, 36: 41-44, 49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201908007.htm
    [7]
    惠冰. 抗车辙剂改性沥青混合料技术性能研究[D]. 西安: 长安大学, 2009.

    HUI B. Research on technical performance of anti-rutting additive modified asphalt mixture[D]. Xi'an: Chang'an University, 2009.
    [8]
    中华人民共和国住房和城乡建设部. 道路用抗车辙剂沥青混凝土: GB/T 29050—2012[S]. 北京: 中国标准出版社, 2013.
    [9]
    袁迎捷, 张争奇, 胡长顺. Superpave沥青规范对改性沥青的适应性[J]. 长安大学学报(自然科学版), 2004, 24(1): 9-11.

    YUAN Y J, ZHANG Z Q, HU C S. Applicability of superpave specification to modified asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2004, 24(1): 9-11. (in Chinese)
    [10]
    SHENOY A. Nonrecovered compliance from dynamic oscillatory test vis-à-vis nonrecovered compliance from multiple stress creep recovery test in the dynamic shear rheometer[J]. International Journal of Pavement Engineering, 2008, 9(5): 329-341.
    [11]
    陈治君, 郝培文. RET复配SBR改性沥青流变特性及机理分析[J]. 北京工业大学学报, 2016, 42(11): 1691-1696. doi: 10.11936/bjutxb2016020012

    CHEN Z J, HAO P W. Rheological characteristics of RET compound SBR modified asphalt and its mechanism analysis[J]. Journal of Beijing University of Technology, 2016, 42(11): 1691-1696. (in Chinese) doi: 10.11936/bjutxb2016020012
    [12]
    黄卫东, 郑茂, 唐乃膨, 等. SBS改性沥青高温性能评价指标的比较[J]. 建筑材料学报, 2017, 20(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201701025.htm

    HUANG W D, ZHENG M, TANG N P, et al. Comparison of evaluation parameters for high temperature performance of SBS modified asphalt[J]. Journal of Building Materials, 2017, 20(1): 139-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201701025.htm
    [13]
    王超, 张金喜, 宋萍萍, 等. 基于多应力蠕变回复试验的沥青结合料高温性能评价[J]. 北京工业大学学报, 2013, 39(12): 1849-1854, 1860. doi: 10.11936/bjutxb2013121849

    WANG C, ZHANG J X, SONG P P, etal. The high-temperature performance evaluation of asphalt binders based on multiple stress creep recovery test[J]. Journal of Beijing University of Technology, 2013, 39(12): 1849-1854, 1860. (in Chinese) doi: 10.11936/bjutxb2013121849
    [14]
    吴春颖, 吕正龙. 基于多应力重复蠕变恢复试验的活性橡胶改性沥青胶结料高温性能评价[J]. 中外公路, 2017, 37(3): 244-246. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201703055.htm

    WU C Y, LÜ Z L. High temperature performance of the reactive activated rubber asphalt binder based on multi-stress creep and recovery(MSCR) test[J]. Journal of China & Foreign, 2017, 37(3): 244-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201703055.htm
    [15]
    ANGELO J D, REINKE G, BAHIA H, etal. Development in asphalt binder specfications[R]. Washington D. C. : Transportation Research E-Circular, 2010.
    [16]
    董雨明, 谭忆秋. 基于重复剪切蠕变的硬质沥青高温性能研究[J]. 公路, 2015(2): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201502036.htm

    DONG Y M, TAN Y Q. Research on high temperature performance of hard grade asphalt based on repeated shear creep test[J]. Highway, 2015(2): 160-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201502036.htm
    [17]
    崔鹰翔, 郝培文. 基于MSCR试验的橡胶改性沥青高温性能[J]. 筑路机械与施工机械化, 2019, 36: 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201904010.htm

    CUI Y X, HAO P W. High temperature performance of rubber modified asphalt based on MSCR test[J]. Road Machinery & Construction Mechanization, 2019, 36: 47-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201904010.htm
  • Related Articles

    [1]WANG Chao, JI Xiaobin, XIE Tingting. Evaluation on Rutting Resistance and Performance of Compound Modified Bio-asphalt Based on Viscoelastic Analysis[J]. Journal of Beijing University of Technology, 2022, 48(6): 667-675. DOI: 10.11936/bjutxb2021110006
    [2]WEI Zhonghua, XU Penghao, YANG Hongwang, ZHOU Wei. Detection Method of Heavy Metal in Hot-melt Road Marking Paint[J]. Journal of Beijing University of Technology, 2022, 48(4): 408-420. DOI: 10.11936/bjutxb2020080012
    [3]CAO Xiuqin, YIN Weiqi, ZHAO Zhendong. Analysis of the Significant Level of Sludge Rheological Models With Different Moisture Contents[J]. Journal of Beijing University of Technology, 2017, 43(1): 150-157. DOI: 10.11936/bjutxb2016020015
    [4]CHEN Zhijun, HAO Peiwen. Rheological Characteristics of RET Compound SBR Modified Asphalt and Its Mechanism Analysis[J]. Journal of Beijing University of Technology, 2016, 42(11): 1691-1696. DOI: 10.11936/bjutxb2016020012
    [5]GUAN Hongzhi, CAO Qi, ZHAO Lei. Correlation Between Characteristics of PM2.5 Mass Concentration and Traffic Flow: a Case Study in Beijing[J]. Journal of Beijing University of Technology, 2016, 42(9): 1372-1378. DOI: 10.11936/bjutxb2015120015
    [6]SHAO Chang-qiao, RONG Jian, ZHAO Lin. Developing Adjustment Factors of Saturation Flow Rates at Signalized Intersections[J]. Journal of Beijing University of Technology, 2011, 37(10): 1505-1510.
    [7]SHAO Zhang-qiao, ZHANG Zhi-yong, RONG Jian. Analysis of Flow Characteristics at Freeway Bottlenecks[J]. Journal of Beijing University of Technology, 2009, 35(3): 354-358.
    [8]LU Yuan-wei, LI Wen-cai, SHENG Jian-ping, WANG Wei, MA Chong-fang. Enhancement of Photocatalytic Reaction Rate of HCHO Under the Action of Mass Transfer[J]. Journal of Beijing University of Technology, 2007, 33(8): 858-863.
    [9]Li Xinyun, Wang Jingjing, Li Tichuan, Zhang Baoquan, Qiu Xuemei, Cheng Weihu. Simultaneous Determination of Multicomponent Phenols With Flow Injection Spectrophotometry by Fuzzy Cluster-Factor Analysis Decomposition in Waste Water Samples[J]. Journal of Beijing University of Technology, 1997, 23(1): 7-17.
    [10]Li Tichuan, Zhang Zhenzhu, Zhang Baoquan, Cui Tiansui. The Application of Factor Analysis Spectrophotometry of Flow Injection pH Gradient to the Simultaneous Determination of Copper, Cobalt and Zinc[J]. Journal of Beijing University of Technology, 1997, 23(1): 1-6.
  • Cited by

    Periodical cited type(5)

    1. 张凡,曹济,王光明,丁德亮,李如意. 新型早强改性沥青路面材料的研制与性能测试. 粘接. 2024(03): 100-102 .
    2. 许欢,张浩浩. 超强沥青混合料在路面大修工程中的应用. 四川建材. 2024(03): 164-166 .
    3. 余森开,林娇,王大为. 废旧GFRP回收及其增强沥青性能. 北京工业大学学报. 2024(04): 443-452 . 本站查看
    4. 翟晓炜. 高温-重载作用下沥青混合料的高温稳定性研究. 工程技术研究. 2023(16): 94-97 .
    5. 岳烨. 不同级配下的高模量沥青混合料试验及应用研究. 工程技术研究. 2022(09): 98-102 .

    Other cited types(4)

Catalog

    Article views (136) PDF downloads (36) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return