• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
JIA Kebin, ZHANG Liang, LIU Pengyu, LIU Jun. Ground-based Cloud Recognition Based on Lightweight Neural Network[J]. Journal of Beijing University of Technology, 2021, 47(5): 489-499. DOI: 10.11936/bjutxb2020120033
Citation: JIA Kebin, ZHANG Liang, LIU Pengyu, LIU Jun. Ground-based Cloud Recognition Based on Lightweight Neural Network[J]. Journal of Beijing University of Technology, 2021, 47(5): 489-499. DOI: 10.11936/bjutxb2020120033

Ground-based Cloud Recognition Based on Lightweight Neural Network

More Information
  • Received Date: December 29, 2020
  • Available Online: August 03, 2022
  • Published Date: May 09, 2021
  • In view of the current low efficiency of cloud identification and the lack of recognized and rigorous open cloud dataset, the largest open cloud dataset HBMCD was constructed by professional equipment combined with manual annotation and transfer learning. It conformed to the standards of the international meteorological organization under the guidance of professionals. On the basis of this, the basic unit by means of depth separable convolution and expansion convolution was constructed, and the light cloud image classification model LCCNet was established by repeating different basic units. Through enough comparative experiments, it is proved that LCCNet not only has low level at parameters and operation complexity, but also has a high accuracy (97.35%) for HBMCD data set, which provides a possibility for equipment integration and practical application.

  • [1]
    BARRY R G. International cloud atlas, volume I: manual on the observation of clouds and other meteors[M]. Geneva: World Meterorological Organization, 1977: 323-324.
    [2]
    陈晓颖, 宋爱国, 李建清, 等. 地基云图云状识别技术及其研究进展[J]. 自动化技术与应用, 2014, 33(9): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201409002.htm

    CHEN X Y, SONG A G, LI J Q, et al. Progress in recognizing ground-based cloud technology [J]. Techniques of Automation and Applications, 2014, 33(9): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201409002.htm
    [3]
    BUCH K A, Tr, SUN C H. Cloud classification using whole-sky imager data, SAND-95-8475C[R]. New Mexico: Sandia National Labs, 1995.
    [4]
    李晨溪, 付强, 邓芾. 基于ESS模型的云状自动识别方法[J]. 解放军理工大学学报(自然科学版), 2016, 17(3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201603011.htm

    LI C X, FU Q, DENG F. Automatic cloud recognition method based on ESS model [J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2016, 17(3): 264-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201603011.htm
    [5]
    张弛, 刘钧, 李旭光, 等. 基于可见光-红外图像信息融合的云状识别方法[J]. 气象与环境学报, 2018, 34(1): 82-90. doi: 10.3969/j.issn.1673-503X.2018.01.010

    ZHANG C, LIU J, LI X G, et al. A cloud classification method based on information fusion of visible and infrared images [J]. Journal of Meteorology and Environment, 2018, 34(1): 82-90. (in Chinese) doi: 10.3969/j.issn.1673-503X.2018.01.010
    [6]
    DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
    [7]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1097-1105.
    [8]
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
    [9]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
    [10]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture forcomputer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826.
    [11]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4700-4708.
    [12]
    CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1251-1258.
    [13]
    SANDLER M, HOWARD A, ZHU M, et al. Mobilenet-V2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
    [14]
    ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
    [15]
    DEV S, LEE Y H, WINKLER S. Categorization of cloud image patches using an improved texton-based approach[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 422-426.
    [16]
    ZHUO W, CAO Z, XIAO Y. Cloud classification of ground-based images using texture-structure features[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 79-92. doi: 10.1175/JTECH-D-13-00048.1
    [17]
    LIU S, DUAN L, ZHANG Z, et al. Hierarchical multimodal fusion for ground-based cloud classification in weather station networks[J]. IEEE Access, 2019, 7(1): 85688-85695. http://ieeexplore.ieee.org/document/8752209
    [18]
    ZHANG J, LIU P, ZHANG F, et al. CloudNet: ground-based cloud classification with deep convolutional neural network[J]. Geophysical Research Letters, 2018, 45(16): 8665-8672. doi: 10.1029/2018GL077787
    [19]
    赵亮亮. 基于神经网络的云图识别与超短期直接太阳光辐射预测研究及应用[D]. 南京: 东南大学, 2017.

    ZHAO L L. Research and application of cloud pattern recognition and ultra short term direct solar radiation prediction based on neural network [D]. Nanjing: Southeast University, 2017. (in Chinese)
    [20]
    ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [21]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [22]
    HU J, SHEN L, SUN G. Squeeze and excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
    [23]
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 618-626.
    [24]
    MA N, ZHANG X, ZHENG H T, et al. Shufflenet-V2: practical guidelines for efficient cnn architecture design[C]//Proceedings of the 2018 European Conference on Computer Vision. Berlin: Springer, 2018: 116-131.
  • Related Articles

    [1]YANG Yanxia, WANG Pu, GAO Xuejin, GAO Huihui, QI Zeyang. Optimization Learning Algorithm Based on Hybrid Bilevel Self-organizing Radial Basis Function Neural Network[J]. Journal of Beijing University of Technology, 2024, 50(1): 38-49. DOI: 10.11936/bjutxb2022020006
    [2]SUN Enchang, YUAN Yongyi, WU Bing, QU Hanxing, ZHANG Yanhua. Deep Reinforcement Learning and Mobile Communication Resource Management: Algorithms, Progress, and Prospects[J]. Journal of Beijing University of Technology, 2023, 49(1): 71-88. DOI: 10.11936/bjutxb2021040026
    [3]HAN Honggui, WANG Yuan, ZHEN Qi. Chemical Laboratory Safety Evaluation Based on Discrete Hopfield Neural Network[J]. Journal of Beijing University of Technology, 2022, 48(11): 1150-1158. DOI: 10.11936/bjutxb2021070005
    [4]LIU Bo, WANG Mingshuo, LI Yong, CHEN Hongli, LI Jianqiang. Deep Learning for Spatio-Temporal Sequence Forecasting: A Survey[J]. Journal of Beijing University of Technology, 2021, 47(8): 925-941. DOI: 10.11936/bjutxb2020120037
    [5]JI Qiang, SUN Yanfeng, HU Yongli, YIN Baocai. Review of Clustering With Deep Learning[J]. Journal of Beijing University of Technology, 2021, 47(8): 912-924. DOI: 10.11936/bjutxb2021010013
    [6]JIA Xibin, LI Jia. Lightweight Pyramid Prototype Alignment Network for Few-shot Semantic Segmentation[J]. Journal of Beijing University of Technology, 2021, 47(5): 455-462, 519. DOI: 10.11936/bjutxb2020110010
    [7]LI Jiangeng, LI Lijie, ZHANG Yan, WANG Pengfei, ZUO Guoyu. Method for Training Convolution Neural Network With Multiple Classifiers[J]. Journal of Beijing University of Technology, 2018, 44(10): 1291-1296. DOI: 10.11936/bjutxb2017040029
    [8]MAO Dianhui, LI Ziqin, CAI Qiang, XUE Ziyu. Tickling Deep Differential Privacy Protection Method Based on DCGAN[J]. Journal of Beijing University of Technology, 2018, 44(6): 870-877. DOI: 10.11936/bjutxb2017070017
    [9]SUN Yan-feng, QI Guang-lei, HU Yong-li, ZHAO Lu. Deep Convolution Neural Network Recognition Algorithm Based on Improved Fisher Criterion[J]. Journal of Beijing University of Technology, 2015, 41(6): 835-841. DOI: 10.11936/bjutxb2014110040
    [10]YIN Bao-cai, WANG Wen-tong, WANG Li-chun. Review of Deep Learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. DOI: 10.11936/bjutxb2014100026
  • Cited by

    Periodical cited type(5)

    1. 宋文强,徐伟,冯琳. 基于残差网络的地基云图识别方法研究. 电子测量技术. 2024(02): 185-192 .
    2. 张雪,贾克斌,刘钧,张亮. 基于多任务学习的地基云图识别与分割技术. 气象. 2023(04): 454-466 .
    3. 魏亮,朱婷婷,过奕任,倪超,滕广,李岩. 基于DAR-CapsNet的地基云图云分类. 太阳能学报. 2023(11): 189-195 .
    4. 顾天红,杜小玲,李力,朱育雷,张艳梅,吴昌航. 基于纹理特征和机器学习的卫星云图分类实验. 中低纬山地气象. 2023(05): 50-55 .
    5. 张雪,贾克斌,刘钧,张亮. 面向轻量化的地基云图分割技术研究. 测控技术. 2022(09): 37-43 .

    Other cited types(5)

Catalog

    Article views (288) PDF downloads (78) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return