Citation: | DENG Xiaofang, ZENG Nongjian, MAI Jiamin, QIAN Kai, LI Zhi. Dynamic Responses of Steel Frame With Welded Cover Plate Flange Connection Beam-Column Substructures Against Progressive Collapse[J]. Journal of Beijing University of Technology, 2021, 47(7): 773-781. DOI: 10.11936/bjutxb2020110004 |
To study the dynamic performance of the welded cover plate flange connection(CWP) steel frame of resisting progressive collapse, a sub-structural detailed finite element model was established by the ANSYS/LS-DYNA software to verify accuracy of the Florea's pseudo-static tests on the middle column removal of the sub-frame. The load-displacement curves obtained from the FEM were in good agreement with the tested results, and the whole processes of the middle column removal until the sub-structure failure were well simulated. Based on the successful validation of the finite element model, the dynamic responses of steel frame beam-column substructure by sudden column removal loading mode were studied. Results show that the load-displacement curve obtained by the FEM is higher than that of energy method, while the result of FEM is closer to the real situation. The failure mode of sudden column removal scenario is close to pseudo-static test.
[1] |
British Technical Committee B/525. Structural use of concrete, part 1: code of practice for design and construction: BS8110[S]. London: British Standard Institute, 2002.
|
[2] |
清华大学, 中国建筑科学研究院. 建筑结构抗倒塌设计规范: CECS 392[S]. 北京: 中国计划出版社, 2014.
|
[3] |
YANG B. Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario[J]. Engineering Structures, 2013, 54: 112-130. doi: 10.1016/j.engstruct.2013.03.037
|
[4] |
YANG B, TAN K H. Numerical analyses of steel beam-column joints subjected to catenary action[J]. Journal of Constructional Steel Research, 2012, 70: 1-11. doi: 10.1016/j.jcsr.2011.10.007
|
[5] |
YANG B, TAN K H. Robustness of bolted-angle connections against progressive collapse: mechanical modelling of bolted-angle connections under tension[J]. Engineering Structures, 2013, 57(4): 153-168. http://www.sciencedirect.com/science/article/pii/S0141029613004082
|
[6] |
Department of Defense. Unified facility criteria, design of buildings to resist progressive collapse: UFC 4-023-03[S]. Washington, D. C. : Department of Defense, 2010.
|
[7] |
American Society of Civil Engineers. Minimum design loads for buildings and other structures: ASCE7-93[S]. Reston: American Society of Civil Engineers, 2005.
|
[8] |
陈俊玲, 舒文雅, 李金威. 框架结构典型梁柱节点的抗连续倒塌性能[J]. 同济大学学报(自然科学版), 2016, 44(1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601008.htm
CHEN J L, SHU W Y, LI J W. Performance of various steel moment connections under progressive collapse scenario[J]. Journal of Tongji University (Natural Science), 2016, 44(1): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601008.htm
|
[9] |
KANG S B, TAN K H, LIU H Y, et al. Effect of boundary conditions on the behavior of composite frames against progressive collapse[J]. Journal of Constructional Steel Research, 2017, 138: 150-167. doi: 10.1016/j.jcsr.2017.07.005
|
[10] |
YANG B, TAN K H. Robustness of bolted-angle connections against progressive collapse: experimental tests of beam-column joints and development of component-based models[J]. Journal of Structural Engineering, 2013, 139(9): 1498-1514. doi: 10.1061/(ASCE)ST.1943-541X.0000749
|
[11] |
乔惠云, 魏建鹏, 田黎敏. 中心支撑钢框架在空腹效应作用下抗连续倒塌分析[J]. 振动与冲击, 2019, 38(24): 115-121, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201924016.htm
QIAO H Y, WEI J P, TIAN L M. Anti-progressive collapse analysis for steel concentrically braced frame under vierendeel action[J]. Journal of Vibration and Shock, 2019, 38(24): 115-121, 157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201924016.htm
|
[12] |
钟炜辉, 谭政, 宋晓燕, 等. 不对称跨度下钢框架组合梁柱子结构抗倒塌能力分析[J]. 振动与冲击, 2020, 39(13): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013038.htm
ZHONG W H, TAN Z, SONG X Y, et al. Anti-collapse capacity analysis for a steel frame composite beam-column substructure with asymmetric span[J]. Journal of Vibration and Shock, 2020, 39(13): 260-266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013038.htm
|
[13] |
刘传卿. 钢框架结构连续倒塌分析模型及应用[J]. 北京工业大学学报, 2011, 37(1): 109-115. doi: 10.11936/bjutxb2011010109
LIU C Q. Numerical model and application of progressive collapse of steel frame structure[J]. Journal of Beijing University of Technology, 2011, 37(1): 109-115. (in Chinese) doi: 10.11936/bjutxb2011010109
|
[14] |
LIU C, TAN K H, FUNG T C. Dynamic behavior of web cleat connections subjected to sudden column removal scenario[J]. Journal of Constructional Steel Research, 2013, 86: 92-106. doi: 10.1016/j.jcsr.2013.03.020
|
[15] |
FU Q N, YANG B, HU Y. Dynamic analyses of bolted-angle steel joints against progressive collapse based on component-based model[J]. Journal of Constructional Steel Research, 2016, 117: 161-174. doi: 10.1016/j.jcsr.2015.10.010
|
[16] |
李国强, 李六连, 陆勇. 平面钢框架瞬时冲击去柱抗连续性倒塌试验研究[J]. 振动与冲击, 2017, 36(11): 48-56, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201711008.htm
LI G Q, LI L L, LU Y. Tests for progressive collapse of planar steel frames under a column sudden removal[J]. Journal of Vibration and Shock, 2017, 36(11): 48-56, 64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201711008.htm
|
[17] |
杜修力, 石磊. 爆炸荷载作用下钢框架结构连续倒塌分析[J]. 北京工业大学学报, 2013, 39(7): 986-993. doi: 10.11936/bjutxb2013070986
DU X L, SHI L. A study on progressive collapse of steel-frame building under explosion[J]. Journal of Beijing University of Technology, 2013, 39(7): 986-993. (in Chinese) doi: 10.11936/bjutxb2013070986
|
[18] |
钱凯, 李治, 何畔, 等. 螺栓连接预制混凝土梁-板子结构抗连续倒塌机理研究[J]. 建筑结构学报, 2020, 41(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202001020.htm
QIAN K, LI Z, HE P, et al. Progressive collapse mechanism of PC beam-slab substructure with bolted connections[J]. Journal of Building Structures, 2020, 41(1): 173-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202001020.htm
|
[19] |
钱凯, 李治, 翁运昊, 等. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906026.htm
QIAN K, LI Z, WENG Y H, et al. Behavior of RC beam-slab substructures to resist progressive collapse[J]. Engineering Mechanics, 2019, 36(6): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906026.htm
|
[20] |
邓小芳, 李治, 翁运昊, 等. 预应力混凝土梁-柱子结构抗连续倒塌性能试验研究[J]. 建筑结构学报, 2019, 40(8): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201908008.htm
DENG X F, LI Z, WENG Y H, et al. Experimental study on performance of prestressed concrete beam-column substructure against[J]. Journal of Building Structures, 2019, 40(8): 71-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201908008.htm
|
[21] |
李治, 翁运昊, 邓小芳, 等. 焊接连接预制混凝土梁-板子结构抗连续倒塌性能研究[J]. 建筑结构学报, 2020, 41(10): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010014.htm
LI Z, WENG Y H, DENG X F, et al. Behavior of precast concrete beam-slab substructures with welded connections to resist progressive collapse[J]. Journal of Building Structures, 2020, 41(10): 121-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202010014.htm
|
[22] |
DINU F, MARGINEAN I, DUBINA D. Experimental testing and numerical modelling of steel moment-frame connections under column loss[J]. Engineering Structures, 2017, 151: 861-878. doi: 10.1016/j.engstruct.2017.08.068
|
[23] |
HALLQUIST J O. LS-DYNA keyword user's manual, version 971[M]. California: Livermore Software Technology Corporation, 2007: 58-63.
|
[24] |
张智升, 刘红波, 陈志华, 等. 低温下钢材的动力本构模型研究综述[C]//第十五届全国现代结构工程学术研讨会论文集. 天津: 天津大学、天津市钢结构学会, 2015: 623-634.
ZHANG Z S, LIU H B, CHEN Z H, et al. Overview of steel dynamic constitutive model under low temperature[C]//Proceedings of the 15th National Symposium on Modern Structural Engineering. Tianjin: Tianjin University, Tianjin Steel Structure Society, 2015: 623-634. (in Chinese)
|
[25] |
李敏, 李宏男. 建筑钢筋动态试验及本构模型[J]. 土木工程学报, 2010, 43(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004014.htm
LI M, LI H N. Dynamic test and constitutive model for reinforcing steel[J]. China Civil Engineering Journal, 2010, 43(4): 70-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004014.htm
|
[26] |
IZZUDDIN B A, VLASSIS A G, NETHERCOT D A. Progressive collapse of multi-stores buildings due to sudden column loss-part Ⅰ: simplified assessment framework[J]. Engineering Structures, 2008, 30(5): 1308-1318. doi: 10.1016/j.engstruct.2007.07.011
|
[27] |
IZZUDDIN B A, NETHERCOT D A. Design-oriented approaches for progressive collapse assessment: load-factor vs ductility-centred methods[C]//Proceedings of Structures Congress 2009. Austin: American Society of Civil Engineers, 2009: 1791-1800.
|
1. |
李易,刘永超,程小卫,孙海林. 钢筋混凝土连续梁抗连续倒塌压拱机制的数值分析. 北京工业大学学报. 2024(11): 1350-1358 .
![]() | |
2. |
李光涛,孙小博,邓炼,李治. 不同受火区域对多层钢框架结构抗连续倒塌机理研究. 建筑科学. 2023(09): 121-130 .
![]() |