• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
JING Lin, WU Chunxiao, DENG Jiguang, LIU Yuxi, DAI Hongxing. Research Progress of Elemental Red Phosphorus Photocatalyst for Energy Conversion and Environmental Remediation[J]. Journal of Beijing University of Technology, 2020, 46(6): 645-654. DOI: 10.11936/bjutxb2019120024
Citation: JING Lin, WU Chunxiao, DENG Jiguang, LIU Yuxi, DAI Hongxing. Research Progress of Elemental Red Phosphorus Photocatalyst for Energy Conversion and Environmental Remediation[J]. Journal of Beijing University of Technology, 2020, 46(6): 645-654. DOI: 10.11936/bjutxb2019120024

Research Progress of Elemental Red Phosphorus Photocatalyst for Energy Conversion and Environmental Remediation

More Information
  • Received Date: December 24, 2019
  • Available Online: August 03, 2022
  • Published Date: June 09, 2020
  • As a newly developed visible-light responsive semiconductor photocatalyst, elemental red phosphorus (red P) has attracted extensive attention in the field of visible-light driven photocatalytic energy conversion and environmental remediation due to its advantages of suitable band gap, unique electronic structure, stable chemical properties, low price and easy availability. The physical and chemical properties, preparation methods, modification research of elemental red phosphorus photocatalyst, as well as the photocatalytic reaction mechanism of red phosphorus based composite photocatalysts were thoroughly reviewed in this paper. Moreover, perspectives for the future development of red phosphorus photocatalyst were proposed.

  • [1]
    FUJISHIMA A, ZHANG X, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Report, 2008, 63(12):515-582. doi: 10.1016/j.surfrep.2008.10.001
    [2]
    ZHENG N C, OUYANG T, CHEN Y B, et al. Ultrathin CdS shell-sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis[J]. Catalysis Science & Technology, 2009, 9(6):1357-1364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a92065111afa1a38a61e06c6dce1e8f
    [3]
    SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Review, 2014, 114(19):9919-9986. doi: 10.1021/cr5001892
    [4]
    MALATO S, IBANEZ P F, MALDONADO M I, et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends[J]. Catalysis Today, 2009, 147(1):1-59. https://www.academia.edu/4647138/Decontamination_and_disinfection_of_water_by_solar_photocatalysis_Recent_overview_and_trends
    [5]
    FUJISHIMA A, HONDA K. Electrochemial photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(6):37-38. https://pubmed.ncbi.nlm.nih.gov/12635268/
    [6]
    LINSEBIGLER A L, LU G L, YATES J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3):735-758. doi: 10.1021/cr00035a013
    [7]
    HU Y S, KLEIMAN S A, FORMAN A J, et al. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting[J]. Chemistry of Material, 2008, 20(12):3803-3805. doi: 10.1021/cm800144q
    [8]
    HARA M, KONDO T, KOMODA M, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chemical Communications, 1998, 3:357-358. https://pubs.rsc.org/en/content/articlelanding/1998/cc/a707440i#!
    [9]
    HASHIMOTO K, IRIE H, FUJISHIMA A. TiO2 photocatalysis:a historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44(12):8269-8285. doi: 10.1143/JJAP.44.8269
    [10]
    NIU M T, HUANG F, CUI L F, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures[J]. ACS Nano, 2010, 4(2):681-688. doi: 10.1021/nn901119a
    [11]
    XU L, JIANG L P, ZHU J J. Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures[J]. Nanotechonology, 2009, 20(4):045605. doi: 10.1088/0957-4484/20/4/045605
    [12]
    WANG J J, FANG T, ZHANG L, et al. Effects of oxygen doping on optical band gap and band edge positions of Ta3N5 photocatalyst:A GGA + U calculation[J]. Journal of Catalysis, 2014, 309:291-299. doi: 10.1016/j.jcat.2013.10.014
    [13]
    CHEN S S, SHEN S, LIU G J, et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light irradiation[J]. Angewandte Chemie International Edition, 2015, 54(10):3047-3051. doi: 10.1002/anie.201409906
    [14]
    CHEN S S, QI Y, DING Q, et al. Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation[J]. Journal of Catalysis, 2016, 339:77-83. doi: 10.1016/j.jcat.2016.03.024
    [15]
    JIANG Y H, LIU P P, CHEN Y C, et al. Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis[J]. Applied Surface Science, 2017, 391:392-403. doi: 10.1016/j.apsusc.2016.04.094
    [16]
    YAN H J, YANG J H, MA G J, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis, 2009, 266(2):165-168. doi: 10.1016/j.jcat.2009.06.024
    [17]
    XIANG Q J, YU J G, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15):6575-6578. doi: 10.1021/ja302846n
    [18]
    REUTERGARDH L B, LANGPHASUK M. Photocatalytic decolourization of reactive azo dye:a comparision between TiO2 and CdS photocatalysis[J]. Chemosphere, 1997, 35(3):585-596. doi: 10.1016/S0045-6535(97)00122-7
    [19]
    LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir, 2014, 30(29):8965-8972. doi: 10.1021/la502033t
    [20]
    LI D H, LI J J, JIN Q W, et al. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation[J]. Journal of Colloid and Interface Science, 2019, 537:256-261. doi: 10.1016/j.jcis.2018.11.033
    [21]
    LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377. doi: 10.1038/nnano.2014.35
    [22]
    TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review, 2014, 89(23):235319. doi: 10.1103/PhysRevB.89.235319
    [23]
    YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8):707-713. doi: 10.1038/nnano.2015.112
    [24]
    BUSCEMA M, GROENENDIJK D J, STEELE B G A, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6):3347-3352. doi: 10.1021/nl5008085
    [25]
    QIAO J S, KONG X H, HU J X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5:4475. doi: 10.1038/ncomms5475
    [26]
    HAN X P, HAN J P, LIU C, et al. Promise and challenge of phosphorus in science, technology, and application[J]. Advanced Functional Material, 2018, 28(45):1803471. doi: 10.1002/adfm.201803471
    [27]
    ZHANG S, QIAN H J, LIU Z H, et al. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies[J]. Angewandte Chemie International Edition, 2019, 58(6):1659-1663. doi: 10.1002/anie.201811152
    [28]
    BACHHUBER F, APPEN J V, DRONSKOWSKI R, et al. The extended stability range of phosphorus allotropes[J]. Angewandte Chemie International Edition, 2014, 53(43):11629-11633. doi: 10.1002/anie.201404147
    [29]
    THURN V H, KREBS H. Uber struktur und eigenschaften der halbmetalle. XXll. die kristallstruktur des hittorfschen phosphors[J]. Acta Crystallographica, 1969, 25:125-135. doi: 10.1107/S0567740869001853
    [30]
    RUCK M, HOPPE D, WAHL B, et al. Fibrous red phosphorus[J]. Angewandte Chemie International Edition, 2005, 44(46):7616-7619. doi: 10.1002/anie.200503017
    [31]
    HU Z F, SHEN Z R, YU J C. Phosphorus containing materials for photocatalytic hydrogen evolution[J]. Green Chemistry, 2017, 19(3):588-613. doi: 10.1039/C6GC02825J
    [32]
    WINCHESTER R A L, WHITBY M, SHAFFER M S P. Synthesis of pure phosphorus nanostructures[J]. Angewandte Chemie International Edition, 2009, 48(20):3616-3621. doi: 10.1002/anie.200805222
    [33]
    KANG X H, MAI Z B, ZOU X Y, et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J]. Analytical Biochemistry, 2007, 363(1):143-150. http://cn.bing.com/academic/profile?id=0930b066cfec88bb1283117d4cb0ae9f&encoded=0&v=paper_preview&mkt=zh-cn
    [34]
    MANCHADO M A, VALENTINI L, BIAGIOTTI J, et al. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing[J]. Carbon, 2005, 43(7):1499-1505. doi: 10.1016/j.carbon.2005.01.031
    [35]
    KUAN H C, MA C C M, CHANG W P, et al. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite[J]. Composites Science and Technology, 2005, 65(11):1703-1710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdff04f827691718a418a7d96225acef
    [36]
    HUANG J J, JIANG Z Y. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta, 2008, 53(26):7756-7759. doi: 10.1016/j.electacta.2008.05.031
    [37]
    ECKSTEIN N, HOHMANN A, WEIHRICH R, et al. Synthesis and phase relations of single-phase fibrous phosphorus[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639(15):2741-2743. doi: 10.1002/zaac.201300327
    [38]
    YU Z X, SONG J X, GORDIN M L, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temprerature cycling stability[J]. Advanced Science, 2015, 2(1/2):1400020. doi: 10.1002/advs.201400020
    [39]
    CHEN Z Y, ZHU Y, WANG Q, et al. Fibrous phosphorus:a promising candidate as anode for lithium-ion batteries[J]. Electrochimica Acta, 2019, 295:230-236. doi: 10.1016/j.electacta.2018.10.062
    [40]
    WANG F, NG W K H, YU J C, et al. Red phosphorus:an elemental photocatalyst for hydrogen formation from water[J]. Applied Catalysis B:Environmental, 2012, 111:409-414. https://www.researchgate.net/publication/241101946_Red_phosphorus_An_elemental_photocatalyst_for_hydrogen_formation_from_water
    [41]
    HU Z F, YUAN L Y, LIU Z F, et al. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency[J]. Angewandte Chemie International Edition, 2016, 55(33):9580-9585. doi: 10.1002/anie.201603331
    [42]
    DING K N, WEN L L, HUANG S P, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts[J]. RSC Advances, 2016, 6(84):80872-80884. doi: 10.1039/C6RA10907A
    [43]
    SHI Z S, DONG X F, DANG H F. Facile fabrication of novel red phosphorus-CdS composite photocatalysts for H2 evolution under visible light irradiation[J]. International Journal of Hydrogen Energy, 2016, 41(14):5908-5915. doi: 10.1016/j.ijhydene.2016.02.146
    [44]
    JING L, ZHU R X, PHILLIPS D L, et al. Effective prevention of charge trapping in graphitic carbon nitride with nanosized red phosphorus modification for superior photo(electro)catalysis[J]. Advanced Functional Materials, 2017, 27(46):1703484-1703493. doi: 10.1002/adfm.201703484
    [45]
    ZHAO H, SUN S N, WU Y, et al. Ternary graphitic carbon nitride/red phosphorus/molybdenum disulfide heterostructure:an efficient and low cost photocatalyst for visible-light-driven H2 evolution from water[J]. Carbon, 2017, 119:56-61. doi: 10.1016/j.carbon.2017.03.100
    [46]
    ZHANG X Y, DING S P, LUO X X, et al. Engineering amorphous red phosphorus onto ZnIn2S4 hollow microspheres with enhanced photocatalytic activity[J]. Materials Letters, 2018, 232:78-81. doi: 10.1016/j.matlet.2018.08.103
    [47]
    CHEN J Q, HUANG S L, LONG Y J, et al. Fabrication of ZnO/red phosphorus heterostructure for effective photocatalytic H2 evolution from water splitting[J]. Nanomaterials, 2018, 8(10):835-846. doi: 10.3390/nano8100835
    [48]
    LIU F L, SHI R, WANG Z, et al. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(34):11791-11795. doi: 10.1002/anie.201906416
    [49]
    LIU Y, HU Z F, YU J C. Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis[J]. Applied Catalysis B-Environmental, 2019, 247:100-106. doi: 10.1016/j.apcatb.2019.01.092
    [50]
    LIU E Z, QI L L, CHEN J B, et al. In situ fabrication of a 2D Ni2P/red phosphorus heterojunction for efficient photocatalytic H2 evolution[J]. Materials Research Bulletin, 2019, 115:27-36. doi: 10.1016/j.materresbull.2019.03.011
    [51]
    ZHU Y K, LV C X, YIN Z C, et al.[001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water[J]. Angewandte Chemie International Edition, 2019, 58:2-8. doi: 10.1002/anie.201813331
    [52]
    SHEN Z R, HU Z F, WANG W J, et al. Crystalline phosphorus fibers:controllable synthesis and visible-light-driven photocatalytic activity[J]. Nanoscale, 2014, 6(23):14163-14167. doi: 10.1039/C4NR04250F
    [53]
    REN Z P, LI D H, XUE Q, et al. Facile fabrication nano-sized red phosphorus with enhanced photocatalytic activity by hydrothermal and ultrasonic method[J]. Catalysis Today, 2020, 340:115-120. doi: 10.1016/j.cattod.2018.09.029
    [54]
    ZHANG Q, LIU X M, TAN L, et al. A near infrared-activated photocatalyst based on elemental phosphorus by chemical vapor deposition[J]. Applied Catalysis B-Environmental, 2019, 258:117980. doi: 10.1016/j.apcatb.2019.117980
    [55]
    ROSHITH M, KUMAR M S, KUMAR A K N, et al. Urchin-like fibrous red phosphorus as an efficient photocatalyst for solar-light-driven disinfection of E. coil[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2019, 384:112034. doi: 10.1016/j.jphotochem.2019.112034
    [56]
    KIM Y J, PARK Y, CHOI A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22):3045-3049. doi: 10.1002/adma.201204877
    [57]
    LI W H, YANG Z Z, JIANG Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries[J]. Carbon, 2014, 78:455-462. doi: 10.1016/j.carbon.2014.07.026
    [58]
    ZHU Y J, WEN Y, FAN X L, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3):3254-3264. doi: 10.1021/acsnano.5b00376
    [59]
    GAO H, ZHOU T F, ZHENG Y, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries[J]. Advanced Energy Material, 2016, 6(21):1601037. doi: 10.1002/aenm.201601037
  • Related Articles

    [1]HE Zheng, ZHAO Nan, LI Jie, CHEN Hanghang, FU Wei, GU Jian, HAN Honggui, LIU Zheng. Decision-making for Membrane Fouling Based on Knowledge Fuzzy Transfer in Municipal Wastewater Treatment[J]. Journal of Beijing University of Technology, 2024, 50(3): 299-306. DOI: 10.11936/bjutxb2022040003
    [2]LIU Hongxu, HAN Honggui, YANG Hongyan. Knowledge-Data-driven Modeling Method of Multi-time Scale Sampling System[J]. Journal of Beijing University of Technology, 2023, 49(4): 395-402. DOI: 10.11936/bjutxb2022090001
    [3]SUN Yong, LI Ni, GONG Guang-hong, HAN Liang. Dynamic Ant Colony Algorithm Based on Knowledge Base[J]. Journal of Beijing University of Technology, 2012, 38(3): 374-379.
    [4]GUI Zhi-ming, LI Yu-jian, CHEN Cai. Knowledge Discovery of Trajectories Under Multi-scale Environment[J]. Journal of Beijing University of Technology, 2011, 37(10): 1570-1574.
    [5]GUO Qing-lin, FAN Xiao-zhong. Research on the Technology of Knowledge Information Searching and Extraction[J]. Journal of Beijing University of Technology, 2003, 29(4): 500-503.
    [6]TU Cheng-yuan. Knowledge-based Variable-Structure Decoupling Control of A Nonlinear Multivariable System[J]. Journal of Beijing University of Technology, 2001, 27(4): 447-450.
    [7]Wang Dakang, Peng Xiaojing. The Knowledge Expression in the Expert System Design for the Rolling Bearing Device[J]. Journal of Beijing University of Technology, 2000, 26(4): 47-50.
    [8]Li Jingwen. Eight Features of Knowledge Economic Age and National Initiative System[J]. Journal of Beijing University of Technology, 1999, 25(z1): 1-5.
    [9]Tu Chenyuan, Tu Chengyu. Topological Transformation of Knowledge Models[J]. Journal of Beijing University of Technology, 1994, 20(3): 57-58.
    [10]Wang Faqing, Ye Zhaochun. A Process Control Scheme Based on Knowledge[J]. Journal of Beijing University of Technology, 1988, 14(1): 56-61.
  • Cited by

    Periodical cited type(6)

    1. 刘洋,石睿,王镇川,吴亚东. 核技术知识图谱的构建研究. 计算机与数字工程. 2024(03): 722-728 .
    2. 牛培宇,侯琛. 基于文本数据增强的中文水稻育种问句命名实体识别. 农业机械学报. 2024(08): 333-343 .
    3. 赵鹏飞,赵春江,吴华瑞,王维. 基于注意力机制的农业文本命名实体识别. 农业机械学报. 2021(01): 185-192 .
    4. 彭紫荆,卢毅敏,黄葵,刘伟. 应用本体的近岸海域环境监测站点布局优化. 华侨大学学报(自然科学版). 2021(02): 229-237 .
    5. 付雷杰,曹岩,白瑀,冷杰武. 国内垂直领域知识图谱发展现状与展望. 计算机应用研究. 2021(11): 3201-3214 .
    6. 刘浏,秦天允,王东波. 非物质文化遗产传统音乐术语自动抽取. 数据分析与知识发现. 2020(12): 68-75 .

    Other cited types(13)

Catalog

    Article views (274) PDF downloads (84) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return