• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊
CUI Ling, ZHANG Jianbiao. Multiple-fault Diagnosis of Finite State Machine Based on Dynamic Clustering[J]. Journal of Beijing University of Technology, 2021, 47(6): 607-615. DOI: 10.11936/bjutxb2019120018
Citation: CUI Ling, ZHANG Jianbiao. Multiple-fault Diagnosis of Finite State Machine Based on Dynamic Clustering[J]. Journal of Beijing University of Technology, 2021, 47(6): 607-615. DOI: 10.11936/bjutxb2019120018

Multiple-fault Diagnosis of Finite State Machine Based on Dynamic Clustering

More Information
  • Received Date: December 22, 2019
  • Available Online: August 03, 2022
  • Published Date: June 09, 2021
  • To solve the problem of too many enumerations in multiple-fault diagnosis, a method based on dynamic clustering analysis was proposed. First, the failed test cases were clustered according to whether they have the same conflict set of initial symptom, and the suspicious degree of the conflict set of initial symptom and its transitions was calculated with this method. Then, the possible fault combinations of transitions were enumerated according to the suspicious degrees. In this process, the failed test cases needed clustering again. Finally, the test set was used to verify the possibility of faults and to generate the fault diagnosis set. Results show that this method can effectively reduce the number of faults enumeration and improve the diagnosis efficiency.

  • [1]
    LI X Y, LI J L, QU Y Z, et al. Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 418-426. doi: 10.1016/j.cja.2019.04.018
    [2]
    SHI L L, ZHOU Z W, HUANG Y. Research and verification of fault diagnosis method for avionics system based on data mining[C]//Proceedings of 20192nd International Conference on Algorithms, Computing and Artificial Intelligence (ACAI' 19). New York: ACM, 2019: 80-86.
    [3]
    文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001023.htm

    WEN C L, LÜ F Y. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001023.htm
    [4]
    RECHE E A, DE SOUSA J V, COURY D V, et al. Data mining-based method to reduce multiple estimation for fault location in radial distribution systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3612-3619. doi: 10.1109/TSG.2018.2832840
    [5]
    XU Z Y, SU Y F, ZHANG P, et al. A correlation analysis model of fault location of distribution system based on RS-IA data mining[J]. Applied Mechanics & Materials, 2017, 863: 345-354. http://www.scientific.net/AMM.863.345
    [6]
    文万志, 李必信, 孙小兵, 等. 基于条件执行切片谱的多错误定位[J]. 计算机研究与发展, 2013, 50(5): 1030-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201305016.htm

    WEN W Z, LI B X, SUN X B, et al. A technique of multiple fault localization based on conditioned execution slicing spectrum[J]. Journal of Computer Research and Development, 2013, 50(5): 1030-1043. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201305016.htm
    [7]
    曹鹤玲, 姜淑娟. 基于Chameleon聚类分析的多错误定位方法[J]. 电子学报, 2017, 45(2): 394-400. doi: 10.3969/j.issn.0372-2112.2017.02.018

    CAO H L, JIANG S J. Multiple-fault localization based on chameleon clustering[J]. Acta Electronica Sinica, 2017, 45(2): 394-400. (in Chinese) doi: 10.3969/j.issn.0372-2112.2017.02.018
    [8]
    HE Y S, YU Z H, LI J, et al. Fault correction of algorithm implementation for intelligentized robotic multipass welding process based on finite state machines[J]. Robotics and Computer Integrated Manufacturing, 2019, 59: 28-35. doi: 10.1016/j.rcim.2019.03.002
    [9]
    林辉, 张希. 基于有限状态机的电机霍尔传感器故障诊断与补偿策略[J]. 东南大学学报(自然科学版), 2019, 49(6): 1054-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906006.htm

    LIN H, ZHANG X. Finite satae machine based fault diagnosis and compensation strategy of motors with Hall sensors[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1054-1063. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906006.htm
    [10]
    LEE D, YANNAKAKIS M. Principles and methods of testing finite state machines-a survey[J]. Proceedings of the IEEE, 1996, 84(8): 1090-1123. doi: 10.1109/5.533956
    [11]
    GHEDAMSI A, VON BOCHMANN G. Test result analysis and diagnostics for finite state machines[C]//Proceedings of the 12th International Conference on Distributed Computing Systems. Washington, D.C. : IEEE Computer Society, 1992: 244-251.
    [12]
    赵保华, 钱兰, 周颢, 等. 基于有限状态机的错误诊断算法[J]. 电子与信息学报, 2006, 28(9): 1679-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200609033.htm

    ZHAO B H, QIAN L, ZHOU H, et al. Fault diagnosis algorithm based on finite state machine[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1679-1683. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200609033.htm
    [13]
    JONES J A, BOWRING J F, HARROLD M J. Debugging in parallel[C]//Proceedings of the 2007 International Symposium on Software Testing and Analysis. New York: ACM, 2007: 16-26.
  • Cited by

    Periodical cited type(3)

    1. 孙来平,虞翊,楚彭子. 状态轮询和事件驱动的软件状态机设计优化. 计算机工程与应用. 2024(12): 303-313 .
    2. 王飞. 基于March算法的医疗器械溯源数据存储方法. 中国医疗设备. 2023(07): 39-44 .
    3. 蒋思宇,王斌,余龙海,余腾飞. 基于FPGA+AD7606的多通道数据采样系统设计与实现. 电子设计工程. 2022(22): 103-107 .

    Other cited types(0)

Catalog

    Article views (173) PDF downloads (62) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return